Application-Transparent
Fault Management

Mark E. Russinovich

Research Report No. CMUCSC-94-8
August 1994

it

DTIC |

1995 /0 /2 O Yo

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

IN REPLY
REFERTO

/?/46 10/ 2 OO

4
L 4

OFFEICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITICN)

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VIRGINIA 22304-6145

DTIC-OCC

SUBJECT: Distribution Statements on Technical Documents

OFFICE OF NAYAL RTSEARCH
CORFORATE PROGRAWS DIVISION
TO: ONR 32
800 NORTH QUINCY STREET.
ARLINGTON, VA 22217.-5660

1. Reference: DoD Directive 5230.24, Distribution Stalements on Téchnical Documents,
18 Mar 87. !

2. The Defense Technical Information Center received the enclosed report (referenced

below) which is not marked in accordance with the above reference.

TECH REPORT
N00014-91-J-4139
TITLE: FAULT-TOLERANT MACH

3. We réduést the appropriate distribution statement be assigned and the report returned
to DTIC within & vyo[king days.

s
4, Approved distribl';,tion statements are listed on the reverse of this letter. If you have any

questions regarding these statements, call DTIC's Cataloging Branch, (703) 274-6837.

FOR THE ADMINISTRATOR:

1 Encl GOPALAKRISHNAN NAIR
Chief, Cataloging Branch

FL-171

Jul 93

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

DISTRIBUTION STATEMENT B:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES ONLY; .
(Indicate Reason and Date Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED
TO (Indicate Controlling DoD Office Below).

DISTRIBUTION STATEMENT C:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS;
(Indicate Reason and Date Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED
TO (indicate Controlling DoD Office Below).

DISTRIBUTION STATEMENT D: ”
L
DISTRIBUTION AUTHORIZED TO DOD AND U.S. DOD CONTRACTORS ONLY; (Indicate Reason
and Date Below). OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office Below).
DISTRIBUTION STATEMENT E:

DISTRIBUTION AUTHORIZED TO DOD COMPONENTS ONLY:; (Indicate Reason and Date Below).
OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office Below).

DISTRIBUTION STATEMENT F:

FURTHER DISSEMINATION ONLY AS DIRECTED BY (Indicate Controlling DoD Office and Date
Below) or HIGHER DOD AUTHORITY.

DISTRIBUTION STATEMENT X:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS
OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE
WITH DOD DIRECTIVE 5230.25, WITHHOLDING OF UNCLASSIFIED TECHNICAL DATA FROM PUBLIC
DISCLOSURE, 6 Nov 1984 (Indicate date of determination). CONTROLLING DOD OFFICE IS (Indicate

Controlling DoD Office).

The cited documents has been reviewed by competent aulhorily and the following distribution statement is
hereby authorized.

/C} OFFICE OF NAVAL RESEARCH - -
(Statement) gORPORATE PROGRAMS DIVISION (Controling DoD Cffice Name)
NR 353

800 NORTH QUiNG R
ARLIN‘C:}’I’CN\!, VA 22217-5680

—
b

<
n
=
m
)T
-~

(Controlling DoD Office Address,
City, State, Zip)

1.9 SEP 1395

CORPORATE PROGRAMS OFFICE
(Signature & Typed Name) (Assigning Ofiice) (Date Statement Assigned)

Abstract

As computers continue to proliferate and they are used in more demanding environments, data
integrity and continuous availability are an increasingly important aspect of their designs. Since
operating systems are common to all computers and it is at the operating system level where there
is maximum system visibility and control, it is appropriate for the operating system to provide
policies which detect, contain and tolerate faults. These policies and the mechanisms that support
them form an operating system’s “fault management.” A tault management mechanism, the sen-
try mechanism, has been designed and implemented for a UNIX 4.3 BSD server running on the
Mach 3.0 microkemel. Fault tolerant policies have been designed for a range of computer sys-
tems, from a single computer, to mirrored computers to distributed systems. The policies first
addressed provide single computer applications with application-transparent fault tolerance with
respect to transient faults and certain types ot permanent faults. Contributions to this area include
algorithms for concurrent process journaling, disk checkpointing and memory checkpointing.
Formal proofs are made of the journal sequencing algorithm and the disk checkpointing algo-
rithm. Performance measurements from an implementation of the single computer algorithms
show an average performance overhead of less than 5% and a requirement of only 10 MB of ded-
icated disk stable storage. The system provides fault tolerance with no additional hardware other
than a hard disk, and works with unmodified applications such as the X-window system. Sentry
policies that provide software based fault tolerance for duplicated and triplicated computer sys-
tems as well as distributed systems have also been designed. Contributions related to these poli-
cies include mirrored system synchronization, fault detection and integration algorithms. In
addition, a new n-fault tolerant distributed recovery algorithm is presented that is based on loosely
synchronized checkpointing. The algorithm journals message order information, instead of using
the message content based journaling of existing algorithms. Only saving information on the
order of messages can potentially result in lower space and time overheads. Two variants of the
algorithm are presented and formally proven. In all three system designs the sentry mechanism

provides sufficient control for the fault tolerant policies. Accesion For
NTIS CRA&I %
DTIC TAB
Unannounced O

Justification

By
Distribution]

Availability Codes

Avail and/or
Dist Special

A-

Table of Contents

ADSEFACE ccviiiveeeerieieitieieiieeseessssssrssserssssssessnsesseaessasssssssssassssssssrsesssssesssssesssesessasssssnsssnssasssensseasesersrsasses i

ACKNOWIEAEZIMENLS ...uviiriiiiiiniiintirrenienitiitiit e s ebe s b srbesaessnesnnsernesasossnessnessesnnses ii

LSt Of FIZUIES...cccviiiiiiiiiiiiiiiiiiitceiinnte ittt cat e ssnsssan s s sabe s sanessss e s sesabesasrassrnessssesssses vii

LiIST Of TADIES cvveeeeiiieeeccreceeettiteerieeieetrcreeseeseeseerestnasnnsnstsssesssssssasesestonanssassssnsnessssnsssssstnssaneennannens ix

Table Of LiStINES....ccoviviiiiiniiiiiiiiiitinniitiiit et inrrecesseessssneesssassesssasasssssssasessess sosssesessasesssnens X
Chapter 1

Background and OVEIVIEW.......iiiimiiriiiiiiieniiiniineneninesesimsssenesss e 1

1.1 INEFOAUCIION ..o e ettt et e e e e 1

1.2 BacCk@roUundoooiiiiiiiiieiii e e 2

1.3 OVEIVIEW ..ottt ettt e e e e et ee et ae e srs e et e e esae e esae e 5
Chapter 2

The Sentry MechaniSm.......uciiineiiinniieiineneessis s stses e ssessesessessessenaens 8

2.1 ENETOAUCTION . .ot e e e s e e ae e e e esee e e e r e e ee e e 8

2.2 SENUTY COMCEPL ittt ettt et st e e sa e 8

2.3 Sentry IMpIemMEentation..........ccoeiiiiiii i 10

2.3.1 Does Mach 3.0 Matter? ..ot 11

2.3.2 Mach 3.0 ATCRITECTUIE ...ovvveiiiieeieee et 12

2.3.3 Sentry Mechanism Implementationccocoiiiiiniii 13

2.4 Monitoring and ASSEITIONS.ccuiiiuieuiiiiieiieiie et 17

2.4.1 The Monitoring POLICYcooiveriiiiiic i 17

2.4.2 The Assertion POHCY ..ot 17

2.5 SUMIMIATY ¢ 1ottt et et e et eb e 21
Chapter 3

Single Computer Fault TOIErance.........oiieeneenicnicninnnnniscssnncsininieisiniioi. 22

3.1 (318 0016 LETo15 o) o UENUUUURURUR OO OO U SRR OO R P UP PO R PP PP 22

3.2 System MOdeloouoiieiiieic 24

3.3 JOUrNAlNg ISSUES ...c..voviiiiiiiiii i 26

33,1 What to Journal ... e 26

3.3.2 Stable SLOTAZE ..oovveieieieie e 27

3.3.3 EVENEOTAOT ...ttt et e e e e 28

334 JOUMNAL SITUCIUTE . .ooveeeeeeeeeie et e e e e e e e e er e e e e e e s snannes 30

3.3.5 Initial CheCKPOINT c.covviiieiiiieeicciei e 32

3.3.6 External Input and OULPUL.........ccccoiiiiiiiiiii i 33

3.3.7 Resource IeNUIEISoooiiiiiiiiiieeeeee et e e 36

3.3.8 Temporal Related QUETIES..........cooiiiiiiiiiiiii e 37

3.3.9 Asynchronous Signals.........cccoooiiiiiiiiiiiiii 37

3.3 10 TIMC-OULS .ot 40

3311 DISK RECOVETY oottt 41
3.3.12 Partial Replay ..o 50
3.3.13 Naming CONVENTIOMS ...oiiiiiiiiiiitiii ettt 51
34 Journaling/Recovery Examples and Performance ... 51
341 Journaling MEASUTEMENLSeovtiieeiiiiii et 53
3.4.2 Disk CheckpPOININE .oooioiviiii e 58
35 Checkpointing ISSUESooiiiiiit e 60
351 NamMING SIFAEZY oottt 63
3.5.2 Memory CheckpOINUng ..ottt 63
3.5.3 Disk ChecKpOINUNEcovieiiiiiioiiiiiie i 66
3.5.4 Operating System CheckpOintingccoccvviiiiiiiniiiiieciee e 66
3.5.5 Taking A SnaPShOL.....coiiiiiiiiiie e 66
3.5.6 Device INHAlIZAHONoouiiiiii i 69
3.5.7 Checkpoint Interval.........coocooioiiiiiiii e 70
3.5.8 Checkpoint RECOVETY...ociiiiiiiiiiiii e 71
3.6 Checkpointing Examples and Performance.............cccccoooiiiii 71
3.6.1 External Pager Overhead ... 72
3.6.2 Snapshot Performancecccoocovviiiiiiiiiviiiiiie e 75
3.6.3 Commit PerfOormance.........coccooiioiiiiiiioiiicicecc e 76
3.6.4 Recovery TIME ..o 77
3.6.5 Examples of Checkpointing........cccoocooiiiiiiiiiiiiiii i 78
3.7 SUMTIATY <ottt et bt s e e e es e sea e 82
Chapter 4
Multiple Computer Fault TOIETanCecovveeininennriinenicenaennnenassssssesnsisssocsssnsseans 84
4.1 INEEOAUCTION ..ottt ettt e 84
42 MIITOTEd SYSIEMIS.vivitiie it &5
4.2.1 System DeSCIIPHOMNcoiiiiiiiiiiiiii e 85
B.2. 2 ISSUES..ooeeeeeiie et e e s 86
4.2.3 Baseling NOAeccoouiriiiiiiiiee e 88
4.2.4 Mirrored System Implementation............ccccooiiiiiiiiinn s 88
4.2.5 Comparison to Existing Fault Tolerant SyStems...........c.coooeiiincnn 98
4.2.6 SBMS and the Sentry Mechanism...........ccccooooiiiiii 100
43 Distributed SYSIEMSoovoiiiiiieiciic i 100
4.3.1 INrOQUCHION.c.viiiieieiieeieet et e 100
4.3.2 The Hybrid Checkpointing AIorithmsc.ccoooiiiii 101
4.3.3 ASSUMPLIONS.ovevieieieeietciiric ettt 103
4.3.4 The Pessimistic-Hybrid Algorithm ... 104
4.3.5 The Optimistic-Hybrid Algorithm ... 11t
4.3.6 Comparison With Existing Algorithms..............ccooin [15
437 Distributed Algorithms and the Sentry Mechanismccooeie [16
4.4 SUMMIATY ..ottt s s ee s bbb s eb e 117

Chapter §

Contributions and Future Directions................ eereenene reeereereresrerernrranes veereerereenenereseneees 118

5.1 CONIIIDULIONS oo 1R

5.2 FULUTE DIICCHONS e e e e 120
Chapter 6

Bibliography....... rrerreebeeresarsnanas rerresreenr e e br et e ba s basane cresrreeeeeaasrane vevaees 121
Appendix

Algorithm Pseudocode............... rereseesresresasasae b e e s as b e e s R be b e e sa b s erbesrae st verrenrnenennns 124

Vi

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.

List of Figures

Fault Management Layer e 9
The sentry MeChaniSImocoiiiiiiii e 9
Multiple policies encapSulating @ SEIVICE ..c.oovviiviiiiiiiiiiee e 11
Flow of control for system call in Mach 3.0/UX ... 14
Flow of control with sentry enabled ... 4
EXample SENITY POINLooiiiiiii ettt 15
FTSCOPE view of UX Crash ... 18
ReCVITOm aSSErtion SEITY ...ooueiiiiiiiii ettt 19
FTSCOPE view of avoided crash ... 20
Example of application that fits application model ... 25
Architecture of single COMPUIET TECOVETY SYSIEMoovriiieiiiieeeiee e 25
A) Communication pattern B) Dependency graph C) Sequencing....................... 29
Event sequencing and its enforcement during reCOVErYcooooveiieiieiiiinenneennnnn. 30
Run length OptimizZation........cccooiiiiiiiiiiniii e 32
Journaling al@Orithmocoo i 32
Replay algorithm......cccoooiiiii i 33
Different external input journaling flush Strategiescccoccooeiiiiiiiiiiinin, 35
Signal sequence number tagging example ... 39
Signal replay algorithm. ... 40
Example of a UNIX pathname...........ccoooooioiiiiii 43
Example rename fI1e ..o 44
Disk checkpoint SUPPOTT TOULINEccciiiiiiiiiitiie e 46
Disk checkpointing algorithms (@)ccocooveiiiiiiiiiii 47
Disk checkpoint algorithms (D).........cccoviiiiii 48
Disk restore algorithms (@)c.oooeiiiiiiiiiiii e 49
Disk restore algorithms (D) ..o 50
Example portion of a journalccocoooiiiiiiiii 53
Profile Of X SESSIOMcuviiiiieeie et 54
X startup with Bitmap applicationcocooiiiiiiiii 55
File creation OVerhead.ococoiiiiiiiiiiii e 60
File deletion overhead.............ccooioiiiii 61
File rename Overheadoooeeiiiiiieeiie e 62
File overwrite overheadccoooiviiioie e 63
Example hash table ... 65
SNAPShOt AIZOTIAM ..ot 69
Checkpoint recovery algorithm ..o 72
Page fault PAtRSoviiiiiiiieccee e 73

Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.

Time per page access tor default and external pager............ocooo 74

Page faults generated by memory touch ... 75
Pageins and pageouts for memory touch ... 76
Snapshot duration for Synthetic programoccoooooioiiiie e 77
Checkpoint commIt delay ..o 78
RECOVETY LIME Lot 79
Architecture of two processor mirrored SYSIeMoeveiieeieeiieiiieiiieeceeiieeeeeeee 87
Two processor MIrrored SYSIEMcooiiiiiviiiiiiiiic e &7
It process is killed at time A, call will not take place..............ocoeiiiniil 89
Example of execution synchronization point..............occoveeiveeioenirienreieeenenn 90
Example of data synchronization POINLccoocvivriiiiiries e 91
Integrating node and buddy node after initial integration...........c.occoocoovevvrenniennnn. 96
Architecture of three node distributed Systemccoviiiiiiiiniii, 101
Inconsistent CheCkPOINIScoiiiiiiii e 107
Example execution ot hybrid checkpointing protocol.........ccooevvininiiiiiinininn, 108
Example execution of output commit protocol.........cccocevviiiivciiininiiiee e, 113

Vil

Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 1.

List of Tables

X SEArt-up PErfOTMIANCEoiiiiiiiiiiiieitie ettt ettt ettt ettt ettt 56
Mouse Input PErfOTMANCE ..ottt 56
Keyboard input performancec..oooooiiiiiiiiiii e 57
X SESSTON PETTOTITIANCE «...vve ittt ettt eee e 58
First checkpoint perfOrMANCeocoviiiiiiiiiiiiiit i 80
Checkpoint duration with and without COMPressioncccccoevvieieiiiciiini 81
Second checkpoint PErOIMIANCEc..coveiieitiiieie et 81
CheCKPOINE TECOVETY ..ottt et e 82
Comparison of Tolerance and dual mirrored SyStemMcccccoeiiviviiiiiiiiininnn, 99
Comparison of Tandem S2 and triple mirrored SySt€mcccccoovvvviiiiciiniiencnnn. 99
Qualitative comparison of rollback recovery algorithm types...........cccccoeeen. 115

Table of Listings

Listng L. Journaling algorithm . 125
Listing 2. Journal replay algorithm . 126
Listing 3. Signal replay algorithm ... 127
Listing 4. Disk checkpoint algorithm Support routinesc.ocoooveevoeioiioiieeeee 128
Listing 5. Disk checkpoint algorithm fault-free execution(a)oo.oocveeviieeiieiieeeee 129
Listing 6. Disk checkpoint algorithm tfault-free execution (b) ..o 130
Listing 7. Disk checkpoint restore algorithm(a) ..o 131
Listing 8. Disk checkpoint restore algorithm(b) ..o 132
Listing 9. Snapshot data SIIUCIUIESccoiiii i 133
Listing 10, Snapshot algorithm (a) ..., 133
Listing 11. Snapshot algorithm (b)ccoooiiiiii e, 134

Chapter 1

Background and Overview

1.1 Introduction

This thesis introduces the notion of fault management to encompass the collection of operating
system policies and mechanisms employed for fault detection and recovery. The idea is advanced
that similar to resource management, the operating system should provide support for other sys-
tem manifestations such as detection of, and recovery from hardware faults and software failures.
Fault management is already, at least implicitly, part of any computer system. In its simplest form
it consists of checking system call parameters to insure they fall within valid ranges. Fault toler-
ance and advanced fault detection, however, has been left to highly specialized systems. As com-
puters proliferate, an increasing number of people have come to rely on the fault-free behavior ot
systems they use. It has become imperative that advanced fault management be introduced into

the general computing environment.

There are two distinct approaches to fault management: application dependent and application-
transparent. The essential difference between the two types is that application dependency implies
that the application participates actively in its own fault management while application-transpar-
ency means that the application is totally unaware of the fault management being performed on its
behalf. An example of an application dependent fault management policy is a library that is linked
with an application that provides the application with primitives for fault tolerant communications
services. To use the library’s primitives, the application must be recompiled or rewritten. An

application-transparent tault management policy that provides fault tolerant services ecither
replaces or augments the services that an application already uses. Applications therefore require
no modification to use the fault management policy.

There has been a long standing division amongst protessionals as to which type of fault manage-
ment is more advantageous. Application-transparency is attractive because, as mentioned betore,
application’s do not need to be changed to take advantage ot fault management policies. Propo-
nents of application dependent fault management make the case that application-transparent poli-
cies must be overly general because they cannot be fully aware of what parts of a computation are
important, and that application dependency can provide much more efficient, tailored solutions to

an application’s needs.

This thesis does not set out to argue that one approach is better than the other. One approach does
not necessarily exclude the other, and in fact, they can be complementary in nature, each address-
ing different fault management requirements. In the real world of computing, however, it can be
argued that effective application-transparent policies are more desirable because existing solu-
tions to problems do not have to be changed. This addresses the important issue ot backward com-
patibility as well as the expense and time of developing customized software that uses application
dependent techniques. The development of practical application-transparent policies is therefore

considered important and necessary in many cases.

A background on the trends and previous work that has motivated this thesis’ exploration of
application-transparent fault management, and specifically, fault tolerance, is described here. This
is followed by an overview of the goals and results obtained in this work.

1.2 Background

A number of operating systems [4], [14], [16], [33], [35] have had policies in their specification to
detect, contain and recover from faults. The policies have always been integral parts of the sys-
tems, usually satisfying a narrow range of dependability and availability needs which, as an inher-
ent assumption, all clients of the operating system desire. The current trend in operating system
design, however, is not to provide a custom design for each class of computer or application envi-
ronment, but rather to design one operating system that is applicable across the entire range of
computer systems, from PC’s to high end multiprocessors. Current examples of such operating
systems include Mach 3.0 [13], [29] and Windows NT[10]. The application domains that these
scalable systems address are diverse in their tault management requirements, and a one solution
approach is clearly no longer acceptable. A PC used at home for personal finance management

and entertainment. for example. will have drastically ditferent needs than a computer system used
as a server by a small business, though both may run the same operating system. Even the same
class of computer can be used in diverse settings that have ditterent performance and fault toler-
ance priorities. This indicates a need for fault management that can be dynamically tuned to the

environment’'s or a particular application’s needs.

The recent growth in popularity of distributed systems has lead to the development of software
layers (middle-ware) that run on top of the native operating systems of the distributed system’s
nodes. Examples include Maruti [26], Consul, Isis [6] and work done at AT&T [15]. In many
cases, these systems provide fault management primitives that are able to take advantage of the
hardware redundancy introduced by multiple node operating environments. All of these systems
provide an application with communications primitives that are used then as the basis for fault

detection or fault tolerance.

[sis, tor example, is based on two communications primitives, abcast and cbcast, with well
defined characteristics that can be used to construct a highly available system. Abcast is a mes-
sage broadcast that is totally ordered with respect to all other abcast messages. Total ordering is
advantageous when calculating global predicates, determining group membership and recovering
an execution. Cbcast is a slightly weaker, but usually sufficient, version of broadcast that pre-
serves causal ordering. Both Consul and Maruti work on similar principals using message order-
ing and recording to facilitate the development of fault detection and recovery schemes.

This middle-ware approach has several potential drawbacks, however. Existing applications
require varying degrees of redesign and restructuring to use the primitives and conform to speci-
fied architectural models. This fact alone makes existing software obsolete when moving to such a
system. While this is of little concern in a research environment, backward compatibility is a very
real, and many times decisive issue in commercial computing environments. Of secondary con-
cern is the requirement of highly specialized programmers to develop correct and etficient pro-
grams. This is a potential additional source of introduced error. The process further burdens
programmers already wrestling with hardware details, operating system quirks and the task of
correctly implementing a specification with learning the intricacies of distributed programming
and the middle-ware primitives. A second potential drawback is that the middle-ware usually
assumes a fail-stop or fail-silent model of computation [33] which is typically not fulfilled by
underlying software and hardware. A node that fails to meet this specification may invalidate the

theoretical correctness of a system.

On the application-transparent side of fault management, a large number of application-transpar-
ent distributed recovery algorithms have been developed in the past decade. Several approaches

3

have emerged including consistent checkpointing [8]. [21]. [24], [37]. pessimistic logging [7].
[37] and optimistic logging [11]. [17]. [18], [20]. [34]. [36]. [37]. They have essentially evolved
from the work of Koo and Toeug [21]. providing a consistent checkpoint. to the work ot Elnozahy
[11]. which provides asynchronous checkpointing and deals with important issues such as com-
mitting output. Like the middle-ware offerings. these solutions are all based on the underlying
assumption that a system failure will be fail-fast or fail-silent. Computer systems usually do not
have the appropriate levels of fault detection to make this assumption a valid one. This highlights
the need for application-transparent fault detection policies to work with these algorithms.

An approach that has been used for both fault detection and fault tolerance is that of hardware
specific solutions. A -variety of computer systems, notably Tandem’s S2 and NonStop, DEC’s
VAX 3000ft and Stratus” XA series[33], are based on hardware approaches to fault management.
These systems provide extremely high levels of fault tolerance and detection, but at a high dollar
price, since they require both hardware and software customizations. In Tandem’s S2, the proces-
sor is triplicated and connected to its peripherals with busses that vote on results generated by
each processor to detect taults. The processors are kept tightly synchronized by proprietary syn-
chronization hardware and the fault management services are totally application-transparent. The
operating system is a customized Unix that allows Posix compliant code to run on the machine
without modification. Like the other operating systems used in hardware based approaches, the
S2's Unix is augmented with assertions [1], [2], [16], [25] that add software error detection to the
existing hardware error detection. The same overall approach is taken in the VAX 3000tt.

In the Stratus and Non-Stop cases, different hardware configurations are used. The Stratus
machines use two pairs of synchronized (mirrored) processors that perform voting at two levels -
between the two components of a pair, and between the two pairs. The Stratus operating system,
like in the S2 case, provides transparent fault management. The NonStop takes a slightly different
approach with its operating system by providing application dependent primitives to support pri-
mary/backup process pairs.

While the hardware approach to fault management can be used to provide high levels of fault
detection and low-level fault masking, it does have some potential limitations. The use of custom-
ized hardware usually means that the technology these machines are based on is usually several
years old. Special operating systems again mean that applications have to be tailored, at least min-
imally, to work on these systems. Perhaps most significantly, the cost, maintenance and complex-
ity of these products place them out of reach of the majority of businesses and institutions that
desire fault tolerance. Only industries that require the highest possible fault tolerance, such as air

trattic control, airline reservations and banks. can aftord them. Small businesses and individuals

currently have no practical solutions to their fault management needs.

The tactors discussed in this section all highlight the importance of research into the area ot appli-
cation-transparent policies that are software based, dynamically selectable, and efficient. The
research serves to bring computing closer to the ideal goal of using low cost, high pertormance.
general purpose computers with fault management software to provide application-transparent

fault tolerance with minimal performance overhead.

1.3 Overview

An area where little research has been done is in the introduction of tunable application-transpar-
ent fault management into operating systems. Placement ot fault management in the operating
system is advantageous over hardware or library placement for several reasons. Since, by defini-
tion, the operating system serves as a computer’s software and hardware resource manager, it has
maximum visibility and control of both the application and the hardware. This combination
allows for fault management policies to be application-transparent and high pertormance.

One common tfault tolerant policy is checkpointing. If checkpointing is implemented as middle-
ware, the application must intelligently choose what parts of its data space should be check-
pointed and provide code that recovers from a checkpoint. If the checkpointing policy is placed in
the operating system, checkpoints can take place without the application’s knowledge and the
application need not concern itself with the details of recovery or of grouping important data. Fur-
ther, operating system based checkpointing can be more efficient through the use of a technique
known as incremental checkpointing where only parts of data that have changed since the last
checkpoint are saved in the new one. While this is only one example, the same characteristics

apply to many other fault management policies.

The research undertaken here has a variety of goals associated with issues discussed above. The
first is to define and implement an operating system mechanism that serves as the intrastructure
for fault management policies. The mechanism have the following characteristics:

be general enough to support complex fault management policies

ehave an activation mechanism that provides for dynamic selection of policies
eallow an application to use multiple policies simultaneously

ebe minimally intrusive

The last point means that existing operating system code must be modified as little as possible in
the implementation. An operating system with a mechanism having these characteristics can be

5

augmented with libraries of fault management policies. Since the interface to the existing operat-
ing system code is clearly defined by such a mechanism. the task ot compiling versions of the
operating system with different collections of policies is trivial. Difterent configurations can pro-

vide fault management policies matched to specific environments.

By making policies dynamically selectable and application-transparent, unmodified applications
can use only the policies they require and can even select ditterent policies depending on the envi-
ronment they are being run in. A major advantage of application-transparency is that the policies
need to be veritied only once. Applications need not undergo tault management verification and
do not have to be changed in any way to obtain the fault management guarantees provided by pol-
icies they use.

The first contribution of this thesis is in the definition and implementation of a fault management
mechanism that meets these goals. The second chapter presents the mechanism, called the sentry

mechanism, and details of its implementation.

There is not yet a good theoretical way to validate the hypothesis that a given mechanism is pow-
erful enough for complex and practical fault management policies. The technique currently avail-
able to substantiate such a claim is through demonstration. Therefore, the definition of such a
mechanism requires that policies be developed for it that are a convincing proof of the claim. Ide-
ally, example implementations of all major fault management policies should be undertaken.

Unfortunately time does not permit this so policies have to be carefully selected. The policies cho-
sen for development fit into a general framework investigating application-transparent fault toler-
ance across the spectrum of computer configurations: from single computer, to redundant
computer to distributed system. The development of each policy has introduced new results in
each of these areas which stand independent of the underlying sentry mechanism. The work dem-
onstrates that the sentry mechanism is highly suitable to these environments and that the policies
are complex and demanding enough that they serve as a good exercise of resources that are
required by typical fault management policies.

As a prelude to the tault tolerant policies, simple monitoring and fault detection policies were
implemented and are discussed with the sentry concept in Chapter 2. These policies were included
in the chapter on the sentry mechanism because they serve as base-line policies and are very
broad in their applicability. For example, the monitoring policy can serve roles in fault detection,
system debugging, trend analysis and application profiling. Their simplicity and utility made them
ideal candidates as the first policies to be implemented, but at the same time this simplicity means
that they do not etfectively demonstrate the sentry mechanism.

Chapter 3 presents policies that provide fault tolerance for applications running on a single com-
puter. The tault tolerant techniques chosen for this environment were journaling. checkpointing
and replay. As mentioned before. many distributed systems algorithms have been developed
which address only the role of message passing in journaling and checkpointing. No known sys-
tem implemented to date deals with all of the issues confronting recovery of a concurrent applica-
tion running unrestricted in a typical computing environment that includes persistent storage such
as a disk. and volatile input such as a keyboard and a mouse. A high priority during the develop-
ment of these policies was practicality. In other words, the policies must have small pertormance
impacts and not place any restrictions on applications running in these environments. Policies
developed in this research have introduced new algorithms for single computer concurrent appli-
cation journaling, as well as disk and memory checkpointing. Performance results for these poli-
cies show that fault tolerance can be provided with typically less than 5% overhead and in many

cases less than 1-2% overhead.

Chapter 4 deals with multiple computer environments. Multiple computers can rely on hardware
redundancy tor fault masking, or on journaling and checkpointing for fault recovery. The first sec-
tion of the chapter presents algorithms for dual and triple mirrored computer systems. The algo-
rithms address the issues of internode synchronization, detection of a failed node and integration
of a new node. Due to time constraints the algorithms have not been implemented, but a discus-

sion of their integration with the sentry mechanism is presented.

The second half of Chapter 4 discusses the use of the sentry mechanism in distributed systems.
During this research, the ideas developed for single computer concurrent applications have been
extended to the distributed systems domain, resulting in a new distributed recovery algorithm that
is superior to existing ones in certain environments. The algorithm bases recovery on the journal-
ing of message order, rather than the approach taken by existing solutions of journaling message
content. This can reduce journaling storage and performance overheads in many cases. A new
form of checkpointing is developed to support order-based journaling by creating consistent
checkpoints based on loose synchronization. Again, the algorithm has not been implemented, but

use with the sentry mechanism is discussed.

Chapter 2

The Sentry Mechanism

2.1 Introduction

While theoretically it would be possible to place fault management mechanism intertace points at
every other instruction in the operating system, it is desirable to be as minimally intrusive as pos-
sible while giving fault management policies the necessary level of visibility and control to sup-
port the most complex of tault management techniques. A fault management mechanism has been
developed which has the characteristics that it is minimally intrusive and provides high visibility
and control to fault management policies. This mechanism has been named the sentry mechanism
because the policies designed for it guard the operating system from undetected faults and prevent
failures. This chapter presents the definition of the sentry mechanism concept, background on the
Mach 3.0/UX (UNIX) system architecture [3], [13], [29], [39] and then the sentry mechanism
implementation in that context. The end of the chapter covers the implementation of sample fault
management policies that perform system call monitoring and fault detection through assertions.

2.2 Sentry Concept

The central idea behind the sentry concept is that operating system entry and exit points provide
sufficient visibility and control to support the majority of standard fault detection and tolerance
techniques. Entry and exit points of the operating system make it possible to form a fault manage-
ment layer which sits between the application and the operating system as shown in Figure 1.

Applications

fault detection 1

Fault Management Layer

fanlt detection .2

System

fault recovery

Fault Management

Policies

Figure 1. Fault Management Layer

These points, called sentry points, allow a policy to encapsulate operating system services such as

system calls, page faults, interrupts, etc. This encapsulation offers sentries two powerful func-

tions: isolation and replacement. Isolation is achieved by placing sentries that filter or change

results crossing the boundary they are placed at. A bypass path from an entry sentry to its corre-

sponding exit sentry allows for a service to be replaced by one implemented in a sentry. When

sentries are enabled for a service, that service is said to be guarded. Figure 2 shows a service

being guarded by one sentry policy.

Request

Operating System

Service

Reply

en

i bypass path

Figure 2. The sentry mechanism

One example of the importance of isolation is in fault detection/correction policies. A policy can
perform consistency and validity checks on important operating system data structures, and per-
form correction in the case of faults, before a service is carried out that would cause the operating
system to fail. The exit point allows faults to be hidden from, or reported to, an application.

System service replacement is necessary for calls that provide enhanced or modified versions of a
service. For example. a fault recovery policy based on journaling will need to replicate system
call behavior based on results the service provided in the initial run. The policy must provide its
own version of the service that reads service results from a journal and provides them to the appli-

cation, thereby recreating the initial run’s outcome.
Characteristics of the mechanism include:

ethe majority of fault management policies require no modification of operating system
internals. This is important because modification of existing code increases the risk of
introducing additional faults. Further, hard-wiring of fault management in the service pre-
cludes the advantage described below.

e policies can be dynamically assigned to guard or leave a service unguarded. This flexi-
bility means that only processes that desire the policies will have them in place. An oper-
ating system can be implemented with sentry policies of varying scope and cost. Policies
can be selected for applications at start-up or after they are running based on their specific
fault management and cost/performance needs.

An operating system that has the sentry mechanism in place should provide a collection of fault
management policies and an activation mechanism for selecting policies to guard specified ser-
vices. Each policy should be characterized in terms of its detection or tolerance capability and the
cost for each service guarded. The mechanism also allows for multiple policies to be simulta-
neously enabled for an application. Policies can then work in conjunction with one another. A
fault recovery policy can be designed to work with a fault detection policy, tor example, or com-
plementary fault detection policies can provide increased coverage. Figure 3 depicts a service

sandwiched between sentries from two policies.

2.3 Sentry Implementation

To understand the implementation of the sentry mechanism, some background describing the tar-
get operating system, which is the Mach 3.0 microkernel running a UNIX 4.3BSD server [13], is
necessary. Throughout this thesis references to performance relate to the development platform
which is an 1486 processor (S0MHz internal/2SMHz external) with 16MB of main memory. Nei-
ther the sentry mechanism concept, nor any of the algorithms developed in this thesis are depen-
dent on the Mach 3.0 architecture. This section first discusses the role of Mach 3.0 and then
describes the Mach 3.0/UX architecture and the sentry mechanism implementation and activation

mechanism.

Operating System
Service

Reply

Figure 3. Multiple policies encapsulating a service
2.3.1 Does Mach 3.0 Matter?

As mentioned above, Mach 3.0 was chosen as the implementation platform. This was primarily
for reasons related to accessibility, and information and debugging support. Because the system
model assumed does not permit applications to make Mach 3.0 calls directly, the fact that Mach
3.0 is a microkernel based operating system did not have an affect on the sentry concept, or any
algorithms developed in the thesis. In order to concentrate on form, rather than purely perfor-
mance, the microkernel was not modified in any way in this implementation. This had a pertor-
mance impact which is seen in external pager usage presented in Chapter 3. To improve
performance, the microkernel would have to be instrumented with sentry points that allow direct

manipulation of pager data structures.

Mach 3.0 represents one extreme of microkernel based operating systems where all the high level
services are placed in one address space, in this case the UNIX server. Current trends in operating
system design fragment this monolithic server into smaller components. In Windows NT [10], for
example, there exist several servers that are dedicated to different tasks. One of these sub-servers
is a file system server. If a fault management policy takes actions related to file system usage, this
file system server must be augmented with sentry points. All sub-servers that are so modified must

have access to a common stable storage device.

[n summary. the sentry concept and the algorithms developed for fault management here are not
dependent in any way on a microkernel based architecture. Further. the concepts can be mapped

onto operating systems with arbitrary degrees of service dedicated fragmentation.

2.3.2 Mach 3.0 Architecture

The software architecture used in this research is the Mach 3.0 (MK) microkemel. In microkernel
operating systems. system services are divided between a user-level server, which provides much
of the visible operating system intertace, and a supervisor-level microkernel that implements low-
level resource management. The microkernel provides enough low-level support so that various
servers can be implemented to run on top of it. For example, servers that have been implemented
for Mach 3.0 include DOS, UNIX 4.3BSD (UX) and MacOS.

UNIX 4.3 [3], [39] was chosen as the initial platform for the sentry mechanism. Factors behind
this decision include the fact that UNIX is widely used in the research community and that UNIX
is at least as complex as either DOS or MacOS with respect to asynchronous signals, multitask-
ing, memory management, and other operating system services. Therefore, results generated
should be migrateable to these other operating systems. In general, both microkernel and UX ser-
vices are available to UNIX applications. To limit initial sentry development, this work assumes
that UNIX applications will only make UX requests. Subsequent development will also incorpo-
rate sentries in the microkernel.

In Mach 3.0 the microkernel provides an [IPC mechanism, virtual memory management, low level
device drivers, and task/thread scheduling. UX implements all UNIX 4.3 system calls, signals, the
UFS (UNIX File System), and UNIX process management. Where necessary, UX calls on MK
services such as task creation and deletion.

While there are several types of services provided by UX including signal delivery, system calls,
and memory management, system calls are the most visible to an application. Figure 4 shows con-
trol flow for a system call. MK takes application system call traps and bounces control into a spe-
cial UX portion of the application address space called the emulation library. This library takes
the system call parameters and number, and packages an MK IPC message which is sent to UX. In
UX, threads (light-weight processes) wait for incoming requests and after decoding the message,
call the appropriate function. After the request has been serviced, UX packages a reply message
and sends it off to the application. The emulation library unpackages the reply parameters from
the message and control is returned to the instruction following the trap.

2.3.3 Sentry Mechanism Implementation
Different operating systems include different services, so the sentry mechanism must be tailored
tor the target system. Classes of services in UX which either are invoked by, or on behalf ot a pro-
Cess. are:

e System calls

e Signal creation

Signal delivery

eProcess creation and deletion

e [nterrupts

Sentry points have been placed at all of these locations in UX, and where applicable, at both the
entry and exit to the service. Services are grouped into classes because all of the services of a par-
ticular class (i.e. the read, write, open, close, etc. system calls) all have the same entry and
exit points. Therefore, instead of placing sentry points at the beginning and end of a read system
call for instance, sentry points are placed in the system call handling loop.

[t should be noted again here that MK offers a variety of low level services to applications run-
ning on this architecture. However, because UNIX applications that use the MK services repre-
sent a very small segment of the existing UNIX application base they have not been addressed
here. When they are included in the system model, sentry points will have to also be placed at MK

services.

The principle of operation for all of these points is the same, so for the purposes of demonstration,
Figure 5 depicts control flow when a policy is enabled for a system call. The same path as in a
standard system call is followed until the point where the UX thread receives the call request mes-
sage. At that time, the thread checks to see if any policies are enabled for the requesting process
for that system call service. If any are enabled, their entry sentries are executed. Entry sentries
may require that the UX system call code be bypassed. When they do, control flow is passed to
the code which executes enabled exit sentries (this alternate flow is not shown in the diagram).

After any exit sentries are executed, a reply message is delivered to the application. The bypass
mechanism, which exists at all sentry entry points, makes it possible for a policy to implement its
own service in lieu of the existing operating system service code. Figure 6 shows a C code exam-

ple of a entry point at a service class entrance.

At each entry and exit point there are different relevant data structures on the operating system
stack that are not globally visible. This makes it necessary to create a different interface at each

13

Application ®

syscall

1. Trap

2. Bounce back to user space

3. MK message with UX request information
4. MK message with UX reply information
5. Return to point of trap

Figure 4. Flow of control for system call in Mach 3.0/UX

Application @)

syscall

1. Trap

2. Bounce back to user space

3. MK message with UX request information
4. Process system call

5. Execute exit sentry

6. MK message with UX reply information
7. Return to point of trap

Figure 5. Flow of control with sentry enabled

#define NUMLIBS XXX /* number of sentry policies */
#define NUMSERVS XXX /* number of services for sentry point */
int sentries_on; /* glecbal sentry mechanism flag */
int frm_libsentrypt_n(NUMLIBS] [NUMSERVS];
/* array of routines registered per
* policy */

/* code for sentry point '‘n’, servnum is the specific service
number . For example, a read system call is assigned the
service number '3’ for the system call sentry point.

The bypass parameter only exits for entry points and

if set by a policy, the service is, of course, bypassed */
sentry_point_n(int servnum, int *bypass, local_vars) ({

int i,3:

int (*ftm_sent) () ;

/* 1f there are no sentries on for this process skip this */
if (proc->p_ftmask && sentries_on)
/* check each policy in ascending order */
for(i=1,j=-1; i<NUMMASK; 1*=2, j++) {
if (proc->p_ftmask & i) &&
ftm_libsentrypt_n(j] [servnum]) ¢(
/* execute the sentry for policy j */
(int) ftm_sent =
ftm_librsentrypt_n(j][servnum];
*bypass |= ftm_sent(servnum, local_vars) ;

Figure 6. Example sentry point

entry and exit point. For example, at the system call entry point, stack data that might be relevant
to a policy include the system call number and the MK request message including the system call
input parameters. Pointers to this stack data are passed to sentries enabled for the service, defining
the intertace for that point. Sentries designed for each point must meet the standard interface defi-
nition. They can then have information specific to the service being requested as well as access to

all global data structures in the server.

The sentry activation mechanism includes several system calls that have been added to UX. They
provide the ability to enable a policy for a particular process and for a particular service (e.g. a
specific system call, signal, etc.). In the UX implementation all services are numbered. System

15

calls are identified by their native BSD numbers and other services. such as signals. are assigned
arbitrary id numbers. An example of how the interface is used will be presented after the system

calls are described. Italics are specific to the complementary torms of the calls.

(un)guardserv(service, policymask, policyp) This call selects the policies
flagged in the policymask to guard or stop guarding the specitied service. The policyp parameter
is an array that has an entry for each tlagged policy. Each entry in the array contains a string and
an integer. These components allow policy specific information to be passed to the policy. For
example, string parameters can be used to specity a directory in which the policy should store
information. or a file name. A policy specific parameter such as a mask of option bits can be
stored in the integer parameter.

(un)guardproc (pid, policymask) This call selects the policies flagged in the policy-
mask to guard or stop guarding the specified process.

libarg(policymask, policyp) This is a general purpose call to allow policies to be
passed parameters or to execute operations dynamically. Parameters have the same definitions as
those for the calls that have been described.

sentryon(), sentryoff () these calls are used to turn the global sentry mechanism on and
oft. If the sentry mechanism is off no checking is done at services for enabled sentries.

ftexecve (command, argp, envp, policymask, policyp) This callis identical to
the UNIX 4.3 execve system call, but has two additional parameters for the sentry mechanism.
The policymask indicates which policies should be enabled when the command 1s executed.

As an example of how the activation mechanism is used, assume that it is necessary to monitor all
read system calls for an application. The user would first enable the monitoring policy for the
read system call using the guardserv command. If the application is already running, the user
would enable the monitoring policy for the application by executing the guardproc command,
or, to start the process running with the monitoring policy the ftexecve command would be
entered. When a child process is created, it inherits the enablings of the parent. The sentryon
and sentryof £ commands can be used to turn the monitoring oft and on.

The assumptions programmed into many of UX’s internal routines prevent sentry policies from
using them to perform such general operations as allocating memory from a managed heap, open-
ing and writing to files and compressing data. UX internal disk operations assume that the opera-
tion is being performed by an application process and therefore directly references the process’
table of file descriptors. Sentry file operations are transparent to the application so they cannot use
this table ot descriptors. This necessitated the development of a library of utility routines that per-

16

form these functions independent of the context of an application process. The inclusion of this
package contributes to system overhead in that additional memory operations are required to exe-
cute them. Much of the code is virtually identical to the UX code and if the UX code was made a

little more general this addition would be unnecessary.

2.4 Monitoring and Assertions

To test the basic mechanism as well as develop interesting and useful policies. a system call mon-
itoring policy and a prototype of an assertion policy were designed and implemented. To demon-
strate their effectiveness, the two policies were used in conjunction with each other. The
monitoring policy was used to discover the cause of a system crash that had been caused by a sim-
ple robustness evaluation program. The assertion policy was used to prevent the system crash
when the program was run. This section describes the monitoring policy and its visualization, fol-

lowed by the robustness program and assertion policy.

2.4.1 The Monitoring Policy

The first policy implemented for the sentry mechanism was the monitoring policy. When the mon-
itoring policy is enabled for a system call, all of the call’s input and output parameters are
recorded to a file associated with the process making the call. Writes to the monitoring file can
either be synchronous or asynchronous and is determined by a flag passed to the policy when it is
enabled for a process. Call information can be used to debug application behavior, debug operat-
ing system behavior, analyze system performance, or can be used in trend analysis.

Several programs have been written to profile generated monitor data and calculate statistics
related to performance, and frequency. As a debugging aid, a visualization tool based on the PIE
[23] visualizer was designed to display the data. By using this tool, the FTSCOPE, the user is able
to quickly see the system call activity of each process involved in an application and to print the
input and output parameters for a selected system call.

2.4.2 The Assertion Policy

As a task related to the sentry development, robustness benchmarks are being developed to quali-
tatively and quantitatively evaluate system dependability. One of these benchmarks is a system
call tester. This program spawns a user-specified number of processes that make random system
calls, passing in buffers containing arbitrary information as parameters. This robustness bench-
mark program regularly crashed the implementation version of UX. To determine which system
call was causing operating system crashes, the program was run with the monitoring policy

17

enabled tor synchronous writes so that information pertaining to the last system call executed

would be stable on disk at the time of the crash.

The FTSCOPE view of the crash is shown in Figure 7. In the top portion ot the FTSCOPE are pull
down menus: below them are type buttons used to filter types of system calls being displayed as
UNIX system calls can be divided into related groups. An additional type called Error Detect is
produced by fault detection sentries when they register a fault. The portion of the window con-
taining bars shows concurrent processes on the Y-axis and a time line on the X-axis. Each process
bar is identified by its process id while different colored rectangles represent their system call
activity. When a mouse is used to click on a system call rectangle, textual information is printed in
the bottom portion of the window. Information includes the system call type, input and output
parameters and the execution time of the call. In Figure 7 the last (rightmost) rectangle has been
clicked on, revealing that it was a recvfrom call that never returned, showing that this was the
last call made by the test program before the operating system crashed.

[scope] [refresh] [vieus] [senote|

|PIEScope view: Barscope][experxment titlet <none>|

select by tupe: [FroGesy | | [Eignal Calls]

-]
B

.1

4

=201
= 237
=315
= 316
=317

= Seconds: 9.308611 3,922500

click to indicate right hand edge of new range, or tyre "G to abort.
click to indicate left hand edge of zoom range, or type "G to abort,
click to indicate risht hand edge of new range, or type G to sbort.
click to indicate left hand edge of zoom range, or type "G to abort.
click to indicate right hand edge of new range, or tuype "G to abort.
click to indicate left hand sdge of zoom range, or type G to abort.
click to indicate right hand edge of new range, or type “G to abort.

recvfrom
inputs:
argLOICINTEGER)Y ¢ Ox7d
argl1ICINTEGER) ; Ox7daf964d
arg[21CNO ARGUHENT): »
argl31(NO ARCUMENT) ¢
argl41CINTEGER) : OxSbilSeec

outputss
argl0l:
argl1l:
argl2):
argl3):
arglal:

RURHRNRIENY

return: ?
btime == 3920000, etime 3= 9,922300, ttime == 0, 002500

Figure 7. FTSCOPE view of UX crash

A policy was developed that has one sentry implemented for the recvfromcall. This sentry per-
forms assertion tests [1], [2], [16]. [25] on each of the recvErom input parameters. If an asser-
tion fails. the call is bypassed and the exit sentry returns with an Error Detected value and a
number identitying the tailed assertion. Part of the actual entry assertion sentry for the recv-

from call is shown in Figure 8 with the first assertion test.

/*
* parameter checking entry sentry for recvifrom
* ftm_error is set to reflect the number of the test which
* failed
*/
ftm_param_recvfromentry(proc_port, interrupt, req, indx, sysnum,
ftm_error_ptr, ftm_skip_ptr)
mach_port_t proc_port;
boolean_t *interrupt;
int indx,sysnum, *ftm_error_ptr, *ftm_skip_ptr;
struct bsd_request *req;
{
register int argoffset,fileno, flags, len;
struct file *fp;
int pid;
struct proc *p;
START_SERVER_PARALLEL (SYS_recvfrom, 1)
p = port_to_proc_lookup(proc_port);
pid = p->p_pid:;
/* get arguments off request message */
argoffset = sizeof (mach_msg_header_t) + sizeof (mach_msg_type_t);
fileno = * (int *) ((char *)req + argoffset);
argoffset += sizeof(int) + sizeof (mach_msg_type_t);
flags = * (int *) ((char *) reqg + argoffset);
argoffset += sizeof(int) + sizeof(mach_msg_type t):
len = * (int *) ({(char *) req + argoffset);
/*
* first check to make sure that the socket 1s in range
*/
if ((unsigned) fileno >= NOFILE) {
/* assertion 1 failed - file is out of range */
*ftm_error_ptr = 1;
} else {
END_SERVER_PARALLEL
}

Figure 8. Recvfrom assertion sentry

When the robustness benchmark program is run with this policy enabled it does not crash the
operating system. An FTSCOPE view of a run is shown in Figure 9. The call that crashed the

quit] [scope] [refresh][vieus] [zoom] [sencte]

[PIEScooe view: Barscope’[sxperlment title: <nome> |

r 1 - — ——— -
{ | [Bignal Calls|[... [Prooess Lalls] System Calls) [w9 [alt] [rere

"

select by type: [PrSSe:

= Seconds: 21,187123
PROC E

PROC
PRGC
PRGC
PROC
PRGC
PROC
PROC
PROC
PROC

click to indicate right hand edge of new range, or type G to abort.
new zoom range is too small <aborted>.
click to indicate left hand edge of zoom range, or tuype ~G to abort,
cslick to indicate right hand edge of new range, or type °G to abort,
recvfrom

inputs?

argLOJCINTEGERY s Ox7d

arg[11CINTEGERY ¢ Ox?dafd64d

argl21CNO ARCUMENT) ¢ »

arg[31(NG ARGUHENT):

arg[4]1CINTEGER) : OxSbi1%eec

outputst

argl0](ND ARGUHENT):
arg(11(NO ARGUMENTY
argl2I(NO ARCUHENT> ¢
argE31(ND ARGUHENTD :
arg[4J(NO ARGUMENT):

X KK XX

error: -1
g.‘lbtxnc a= 21,280000, etime == 21,540000, ttime == 0,260000

i1

Figure 9. FTSCOPE view of avoided crash

operating system when the policy was not in effect is shown as the dark rectangle in the bottom
center of the window. Its textual information shows that it has the same input parameters, and the
negative return value indicates that an assertion failed in a detection policy.

This experiment demonstrates the power and efficiency of the sentry mechanism in fault detection
capacities. It also highlights the usefulness of system monitoring and visualization as tools for iso-
lating faulty behavior. The assertion policy example is somewhat trivial in that the information
obtained by the monitoring library should be used to correct UX instead of writing an assertion
policy, but the ideas presented are directly applicable to more sophisticated fault detection tech-

niques.

20

2.5 Summary

This section has introduced the sentry mechanism as a framework of support for tunable. applica-
tion-transparent fault management techniques. The sentry mechanism uses the concept of operat-
ing system service encapsulation to provide policies with high system visibility and control. This
encapsulation allows policies to monitor or alter service entry or exit parameters or to replace sys-
tem services through the use of a bypass facility. The chapter also presented two relatively simple.
yet usetul, policies, the monitoring policy and the assertion policy. Monitored data can be used tor
a wide variety of purposes making it a general support policy that is desirable in many environ-
ments. Fault detection through assertion testing has proven to be the method of choice in commer-
cial fault tolerance to detect operating system faults and the prototype policy shown here
demonstrates its possible application in the sentry policy domain. Finally, a powertul visualiza-
tion tool was described that makes it possible to utilize monitor data to determine fault locations.

2l

Chapter 3

Single Computer Fault Tolerance

3.1 Introduction

Since the time that computers became a personal commodity in the early 1980’s, people have
accumulated countless horror stories related to the loss of data and time due to the computer
crashes. Papers have had to be re-typed, experiments re-run, and data re-entered. If the time and
frustration that such losses have caused individuals and businesses were to be translated into dol-
lars, the figure would surely be in the tens or hundreds of millions of dollars. Despite this fact
there has been a dearth in research or commercial otferings to avoid such problems. The research
here has lead to novel approaches to the problems of single computer fault tolerance, while serv-

ing as an excellent proving ground for the sentry concept.

A variety of different fault tolerance techniques including process pairs [4], [16], [33] and recov-
ery blocks {33] have been used to provide fault tolerance in single computer environments. The
most popular however, are journaling [S], [11], [12], [14], [21], [34], [35] and checkpointing (5],
[121, [19], [20], [21], [34], [35], [38]. Journaling and checkpointing are complementary tech-
niques that, unlike process pairs and recovery blocks, enable an application to survive a complete
crash of the computer, including loss of all volatile data. As an application executes, information
that would not automatically be recreated in a repeat run, such as inputs from the user, must be
saved in stable storage. When a failure occurs, this journaled information can be used to re-exe-

cute the failed run, bringing the application up to the state that existed just before the failure. To

22

reduce the latency of replaying a lengthy journal and to limit journal growth, checkpoints ot the
application’s state must be periodically taken to serve as intermediate starting points. Then. when
a tailure occurs, the application can restart at the checkpointed state and work torward. Following
a checkpoint journaled information associated with state that existed prior to the checkpoint can

be discarded.

There has been no research to date that has applied the techniques of journaling and checkpoint-
ing to the software environment of modern day operating systems. Published journaling algo-
rithms have addressed distributed systems where processes have no persistent storage and
communicate via messages. This model of computation is not followed by the majority of per-
sonal computer and workstation software where disks provide for high capacity storage and com-
munication. In addition, the algorithms are not adapted to the special environment of single
computer environments where processes have tightly coupled interprocess communication.

Several high priority goals were involved in the development of the journaling and checkpointing
policies for the sentry mechanism. The most important was that the policies had to be application-
transparent. If this requirement were not satisfied, new programs would have be written to use the
policies or existing programs would have to be modified. The majority of computer user’s do not
access to the source code of programs they use, and if they do, they do not have the time required

to learn the intricacies of a program necessary to make modifications.

Another important goal was that the application model supported by the policies be as free of con-
straints as possible. It would be unacceptable, for example, to restrict programs from using disk
storage, as most journaling and checkpointing algorithms do. The benchmark that has been used
to measure success with respect to this goal is the ability to recover a full interactive windowed
application session. This type of application encompasses all features of the modern computing
environment including concurrent processes, disk storage, asynchronous signals, input and dis-
play devices.

Another high priority goal was practicality. When research began it was unclear as to what levels
of overhead could be achieved in an unrestricted environment. While a target of this research was
to provide policies that would make a hard disk a practical solution to stable storage, it was under-
stood the complexities involved might make this impossible and that special purpose hardware
might be required.

Finally, while recovery schemes that have attempted to address (at least in design) the scope of a
modern day computing environment [7], [35] have been directed at full recovery of the machine,
the approach here is to only recover a specified applications (referred to as ft-applications). This
application oriented approach provides a system with much more flexibility as well as potentially

23

reducing overhead. In the operating system oriented approach all processes running on a com-
puter are involved in journaling and checkpointing and the entire operating system address space
is involved in the checkpointing process. When recovery takes place a special recovery boot is

necessary in lieu of the standard boot.

By focusing on a particular application, the overhead ot journaling and checkpointing non-essen-
tial processes such as system daemons is avoided. Checkpointing the entire operating system is
also avoided. Only data structures in the operating system that are directly relevant to the recovery
of the ft-application have to be saved. This savings alone can involve several orders of magnitude
in data size. Additionally, there is no requirement for a special boot sequence. After a failure the
machine can be rebooted as usual, and exercised by system diagnostic programs such as UNIX's
fsck file system consistency checker. The user can also login and perform maintenance before
initiating the recovery of the ft-application. In fact, the computer can be used in normal operation
with the recovery of an application post-poned indefinitely. It is important to note that the applica-
tion oriented approach does allow for multiple ft-applications to be running simultaneously. In the
extreme case, where all processes running on the machine are part of ft-applications, the system
degenerates to the operating system oriented approach, but the advantages of normal boot and
login are still maintained.

The result of this research include journaling and checkpointing policy designs and implementa-
tions that realize the above goals. Fault tolerance is provided transparently to the most demanding
of typical workstation applications such as the X-window system [32] and its client programs
with less than 5% overhead. The system model is flexible and allows for concurrent processes,
signal delivery, disk checkpointing, file sharing, and mouse and keyboard input.

The first part of this chapter discusses the issues solved in journaling design and journaling mea-
surements. The second part of the chapter is devoted to checkpoint design and pertormance.

3.2 System Model

The application model used for the checkpointing and journaling policy is a concurrent system
where the application’s process creation dependency graph is a tree. A node is the parent of all
nodes that are below it in the tree (i.e. those nodes are its children). Processes communicate with
each other primarily through message passing, but are also allowed to communicate through files
and asynchronous signal delivery. UNIX BSD 4.3 does not support shared memory so shared
memory issues are not addressed here. Inputs to the system from the mouse and keyboard and
designated as external inputs. The vast majority of single processor applications fit into this model
including the X-window system. An application example is shown in Figure 10.

24

application boundary

[]

—_—

-+— cxternal device input and output

process
communication
process spawned

Figure 10. Example of application that fits application model

Applications that involve communication with processes that do not have the same root process

do not fit this model. This means that applications are restricted to a single computer and that no

communication can take place with processes on other computers or that are part of a different

application tree. Relaxation of these restrictions is the focus of the chapter on multiple-computer

tault tolerance.

Inter-relationships between policies and resources are shown in Figure 11.

Application

Process

Application
Process

External Inputs

Figure 11. Architecture of single computer recovery system

25

3.3 Journaling Issues

[ssues that had to be addressed during the development of this policy include:

e what to journal

estable storage medium

sorder of cvents

ejournal structure

e1nitial checkpoint

ecxternal input and output

eresource identifiers

etemporal related queries

easynchronous signal delivery

etime-outs

edisk recovery

e partial recovery

enaming conventions
This section will present the approach taken for each issue in the order listed. It should be noted
that there are actually two sentry policies that are related to journaling: the fault-free execution
policy and the journal recovery policy. Both will be generally referred to as the “journaling pol-
icy.

’

3.3.1 What to Journal

One of the most important questions to be answered before the development of a journaling pol-
icy can be developed is “what needs to be recovered?” The answer to this question directly drives
the answer to the question of what to journal. In the case of the model presented, recovery of sin-
gle computer concurrent applications is desired. But what does this mean? There are several lev-
els of recovery that can be targeted, from the two extremes of precisely replaying every machine
language instruction executed up to the crash, to just being able to restart the application. The
former type of recovery can only be practically achieved with extensive hardware support, and the

latter does not restore any intermediate data.

Clearly, an effective solution lies somewhere between these two extremes. Theretore, data that is
important in terms of recovery must be defined. In the case of the application that is being tar-
geted, the X-window system, input from the user is considered the most important kind of volatile
data.

To make this point clear, here is an tllustrative example: the user has started the window system
and run a complex CAD program where a detailed drawing was entered with the use of the
mouse. The drawing took approximately ten minutes to input. After it was entered. the user spec-
ified that a highly computation intensive transtormation be performed on the data. The transtor-
mation also takes about ten minutes to complete. Because of the length of the computation. the
CAD program displays the estimated time of completion alongside the time of day clock. Some-
time during the middle of the computation the computer fails due to a transient in the operating

system.

[t there is no fault tolerance in place the user must re-enter the drawing, a process that can be very
difficult, time consuming and prone to errors. The computation could then take place without user
interaction. If the fault tolerance consists of recovering every non-deterministic event that took
place over the whole run, then the drawing process will be exactly replayed and the computation
will display the same times displayed in the original run. While it is extremely useful to replay
user inputs, it is rarely necessary tor the events that followed the inputs to be replayed exactly. In

this case, the original time of completion can not be valid in the later recovery run.

This does not mean that non-deterministic events can be ignored, however. For instance, time of
day can play an important role when an application will make system calls prompting for input.
Theretore, what is important are both all user inputs, and the record of non-deterministic events
that lead up to the prompting for input. These considerations lead to a key optimization, discussed
later, that makes possible the goal of practical journaling without special hardware.

3.3.2 Stable Storage

One of the requirements of journaling and checkpointing policies is that information saved about
the state of an application must be able to survive a system tailure. The medium used for this stor-
age is called stable storage, while storage that will not survive a failure is called volatile storage.
The choice of stable storage has an effect on the fault model (i.e. what faults the system can expe-
rience and still recover). As an example, battery-backed RAM is often used for stable storage. The
RAM's contents will remain intact through a power failure, and most operating system crashes,
but a failure that causes the memory to be overwritten will prevent a recovery from being possi-
ble.

Because one of the goals in the development of these policies is to provide fault tolerance without
requiring the use of special hardware, the logical candidate for stable storage is a hard disk. Hard
disk drives are an attractive alternative to battery backed RAM or flash memory because they are
widely available and extremely cheap in terms of dollars per megabyte. Like battery backed

27

RAM. data on a hard disk can survive power failures as well as the majority of transient and per-

manent CPU failures.

Failures that are not tolerated are permanent software failures in the operating system (bugs that
appear every time the application 1s run). This is not too dissimilar from battery backed RAM
which will not tolerate transient failures that cause the data stored in it to be destroyed. Of course,
installing a mirrored disk (an ideal policy tor the sentry mechanism) overcomes the problem of a
permanent disk failure. The strong advantage battery backed RAM has over disk storage is pertor-
mance, but the algorithms introduced here make the disk a very practical stable storage device for

a wide class of applications.

3.3.3 Event Order

External input alone is not sufficient to force correct recreation of a concurrent application during
recovery. Preservation of event order is also necessary. In a single process environment the order
of events internal to the process will always remain the same provided the process is given the
same inputs. When moving to multiple processes the problem is identical to the problem
addressed by distributed systems journaling algorithms. In this case the order of interprocess
events must be preserved. In UNIX, events with interprocess effect are made up entirely of inter-
process communication system calls (signals are handled specially, and are discussed later).

Execution of these calls creates a communication dependency graph for the application. An exam-
ple execution is shown Figure 12(a). The communication pattern creates the dependency graph
shown in Figure 12(b). Journaling algorithms in distributed systems are required to maintain these
graphs which are used during recovery to replay events in a correct order. Parts of the graph that
are not dependent on one another can be replayed by these algorithms in parallel. However, main-
taining these dependency graphs becomes expensive when there is a high degree of communica-

tion.

An alternative approach is to impose a total time-precedence based order on events disregarding
their dependencies. Distributed recovery schemes do not use this ordering because it requires a
notion of global time, which is too costly to maintain to be practical in a distributed environment.
On a uniprocessor, however, precedence ordering is easily obtained by maintaining a counter.
Each interprocess event is atomically identified with a sequence number. Figure 12(¢) shows this
identification for the example events. These identifications are known as the global sequence
number, and each application has a global sequence counter which is shared by all of the pro-
cesses in the application. If events are replayed with the same global ordering, then all depen-
dency graphs will be automatically recreated. A proof of this is given below.

28

Process 1 >
Process 2 . ‘\ - \C - / >
Process 3 / / >
' (a)
N I
o
e
(b)
Process 1 >
Process 2 >
Process 3 »

Figure 12. A) Communication pattern B) Dependency graph C) Sequencing

Theorem 1. Recreating the global sequence will recreate all events.

Proof. Let “a — b” denote that event b “depends on” event a, and seq, be the global sequence
number assigned event e. The assumption is that if all events e such that e — ¢’, are recreated then
¢’ will be recreated. The proof is by induction on e. For all events e — ¢, global sequencing
implies that seq, > seq,. In replay all events e will therefore take place before ¢’, thus recreating
e’]
Atomicity must be enforced between assignment of a sequence number and the actual event being
assigned, so that the event’s sequence number is an accurate identification of its time ordering. In
many cases the locking in UX does not guarantee atomicity when the sequence number is incre-
mented in a sentry. For these situations, enough of the service must be replicated in the sentry so
that locking can be added to enforce the required atomicity.

Figure 13 shows an event chart on the left for the events of an original run. On the right side it
shows how event order is preserved during a recovery. In the original run, process B must wait to
execute the system call event and the associated sequence increment, until A executes its atomic

Process A Process B Process A Process B

n+l

Original run Recovery run

system call entry or exit
B cvent

B scquence increment
B biocking

...... I Wakeup

Figure 13. Event sequencing and its enforcement during recovery

event and sequence increment. During recovery, process B enters its system call first, but it must
wait until the sequence number becomes n betore it can continue.

Because the model allows for communication through files, all file related system calls must be
sequenced as well. A common example of file sharing is looking at the contents of a file while it is
being created by a different program.

3.3.4 Journal Structure

There are several options for structuring a journal. For example, each process of an application
could have a separate journal, or the entire application could share the same journal. Each has its

own advantages.

If separate journals are kept, each process can know what its next sequenced call will be by read-
ing the next entry in its journal. In a single journal implementation synchronization must take
place when data is written to, or read from, the journal. A single journal is advantageous if writing
to stable storage is transactional in nature, and buffering in volatile memory or a stable storage
cache can take place. A flush of independent journals means that several transactions must take
place. This can lead to performance degradation associated with multiple transactions or disk
operations, if a disk is the stable storage medium. For these reasons, the decision was made to
have one journal shared by all processes of an application.

As mentioned above, a single journal approach introduces the problem of locating a piece of
needed data. For instance, when a system call occurs during a recovery that has external inputs
that must be retrieved from the journal, the sentry must find the place in the journal where the

30

information is stored. The approach taken is to extend the sequence numbers assigned 1o interpro-
cess events to all events stored in the journal. When writing to the journal a process must wait
until all records with lower sequence numbers have been written betfore 1t can proceed. Then in
recovery. processes executing calls that have records in the journal block until their turn to incre-
ment the sequence number. When the sequence number is incremented, the process doing the
increment reads the next entry out of the journal. Entries must be tagged with process identifiers
so that a process can inform the process owning the subsequent record that it is its turn to proceed.
The corresponding process can then read the journal when it arrives at the point where it must do

S0O.

Optimization of journal size can be made by noting that there is unnecessary information in the
journal. Processes frequently make a series of entries in the journal that are uninterrupted by other
processes. Such a series is known as a run. Records after the first entry of a run can be removed
from the journal without loss of information, because during recovery the process that owns the
first entry of a run can assume it is responsible for the missing entries as well. Note, however, that

entries that have data such as device input cannot be removed.

Journal entries that are missing are initially written to the journal, but are then over-written by
subsequent entries of a run. This is required to assure that an application knows when a recovery
is complete and normal execution can begin. If the records were never stored in the journal, the
application could erroneously conclude that recovery had finished, and then cause a ditferent glo-
bal ordering. Overwriting insured that the last record of an execution will always be in the journal.

To better demonstrate how journal run-length compression works, see Figure 14. Process A
begins a run that has its first record written to the first record of the journal. Subsequent entries of
its run are all written to the second record entry. When process B starts its run, its first record is

written to the second entry and subsequent records are written to the third entry.

The journaling algorithm is shown in high level pseudocode in Figure 15. The primitive wait ()
causes the process to sleep until the specified condition is true while wakeup () allows sleeping

processes that had been waiting on the specified condition to continue.

Figure 16 shows the replay algorithm. The current record is initialized at the beginning of recov-

ery by reading the first record out of the journal.

31

Process A Process B

tinal
tme | ontens
2
3
4

HNEE scquenced event

Figure 14. Run length optimization

routine journal (record)
begin /* journal */

global sequence number := global sequence number + 1;
if(last sequence number journaled #
global sequence number - 1)

begin /* if */
wait (last sequence number journaled =
global sequence number - 1);
end /* if */
if (last entry in journal was made by this process)
begin /* if */
overwrite previous record with record;
end /* 1f */
else
begin /* else */
append record to journal
end /* else */
wakeup (process waiting for this sequence to be journaled);
end /* journal */

Figure 15. Journaling algorithm

3.3.5 Initial Checkpoint

Journaling cannot exist without a recoverable initial state. In the absence of a checkpoint the ini-
tial state is an implied initial checkpoint. To recover a session the recovery policy must have some
way of knowing what command began the session and must be able to present the application
with the same working environment. In UNIX, for example, the recovery must start the same pro-

32

rd)

O

routine replay(current rec

begin /* replay */

if (process that made current record #
this process)
begin /* if */
walt{current record process =

this process);

end /* if */

if (global sequence number =
current record sequence -1)
begin /* 1if */

current record := read next journal record;
end /* if */
global sequence number := global sequence number + 1;

if (current record seqguence number =
global sequence number)
begin /* if */
current record := read next journal record;
wakeup (process that made current record});
end /* if */

end /* replay */

Figure 16. Replay algorithm

gram, passing it the same parameters, and it must also start the application with the same working
directory and environment variables. The simple solution to this is to store required information in
a journal header when an application is started. The recovery process reads the header to obtain
these parameters, initializes the program’s environment, and starts the recovery.

3.3.6 External Input and Output

Information needed to recover an application includes any external input the application has
received. In the application model described earlier, the only information received from an exter-
nal source are device inputs that are not automatically and identically recreated when an applica-
tion is re-run. A mouse and a keyboard are examples of these input devices, because during a

recovery the same inputs cannot be made to automatically appear on these devices.

These external inputs are the relevant information to be journaled in the single computer environ-
ment. Lost mouse and keyboard inputs will not be automatically regenerated, while lost commu-
nications patterns can be recovered, albeit not precisely, without using a journal. This can be
clearly seen by considering the X-window system. In the absence of journaling, if the user presses
the mouse button, pulls down a menu, and makes a selection, and the computer then fails, the
user’s input will be lost. If the input is replayed with the aid of a journal, however, the actions that

33

the window system takes after the menu selection will be recreated. regardless of whether it was

journaled or not (note that additional inputs are ignored during recovery).

[t every journal entry were important, the journal would have to be synchronously flushed every
time an entry was created. Synchronous disk operations can severely degrade a system’s respon-
siveness and throughput thus, the realization that only external inputs are important leads to the
optimization of synchronously writing the journal to disk only when an external input is written to
L.

Even when a system is designed to synchronously write external inputs to disk, input can be lost.
[f the system crashes while an input is being written to disk, an input will be lost. Input can also be
lost if the rate of input exceeds the rate of disk operations. For example, a burst of typing can
result in keyboard input being buffered by the keyboard device driver. If the system fails, all butt-
ered keystrokes will be lost, regardless of the journaling strategy. Since there can be no guarantee
made as to how many inputs can be lost in the event of a failure, the goal of the journaling policy
should be to minimize the potential loss, while maximizing performance.

The fault tolerance demands of the system dictates the journaling/performance trade-otfs that can
be made. In some systems outputs made to certain devices must be committed [11] so that in a
recovery the system will not enter a state inconsistent with outputs it has previously made. In such
an environment the journal must be flushed before these external outputs are made, ensuring that
the state that lead to the output will always be recreated in a recovery. In other situations, such as
the one presented in the system model used here, there is no need for committed output. These
systems are called here soft fault tolerant systems, whereas those that require commitment of cer-

tain outputs are called hard fault tolerant systems.

In a soft fault tolerant system, journaling/performance trade-offs are possible. If external inputs
are asynchronously flushed, rather than synchronously flushed, the system can continue to work
while the journal is being written to disk. This can improve the system’s responsiveness while still
maintaining a very low probability of losing more than one input. If the input rate is less than the
time of an asynchronous disk operation the system is balanced as shown in Figure 17(a) . In the
figure vertical arrows represent external input arrivals, and the grey rectangles represent disk
operations on behalf of the numbered input. If the input arrival period becomes less than the time
to perform asynchronous disk operations the system will become bottlenecked writing blocks to
the disk (Figure 17(b)).

34

1,2 3.4 5,6 7.8

(¢) tuned system

—_— time

— asynchronous
disk write

l external input

Figure 17. Different external input journaling flush strategies

It is clear that the number of inputs that are potentially lost in a failure increases as long as the bot-
tleneck exists. To prevent this, the system can be tuned by flushing the journal every n inputs
where n is determined by the following equation:

n

_ [duration of asynchronous disk operation }
input arrival period

35

In the case of a failure at most n inputs will be lost. Figure 17(¢) shows a tuned system. In a typi-
cal single computer environment, the loss of a minute of input would be tolerated. This is the
equivalent of several thousand mouse inputs or several hundred keystrokes. In the development
system (a SOMHz 1486) an asynchronous disk operation takes in the order of 50 milliseconds
while the maximum arrival period of mouse inputs is about 25 milliseconds. The above equation
yields n = 2, so to be tuned, the journal should be flushed every 2 mouse inputs. For keyboard
input, the keystroke arrival period for a fast typist is about 100 milliseconds (100 words/minute
where a word is 6 characters), resulting in an n of 1. The journal should therefore be flushed every
keystroke. A system with these parameters will lose a maximum of two inputs that were recog-
nized by the operating system - a result that most users would find quite acceptable.

3.3.7 Resource Identifiers

There are a variety of system calls in UNIX that act on or return resource identifiers. In the oper-
ating system oriented approach to fault tolerance, these identifiers will be identical in original and
recovery runs because all data structures in the operating system, including those that the identifi-
ers reference, will be recovered. In the application oriented approach to single computer fault tol-
erance, the application may not obtain the same resources during a recovery and therefore the
identifiers can change.

Process identifiers are a very visible example. Process identifiers are assigned in incrementing
order as processes are created. If the application recovery is started after a different number of
processes have been created since the machine rebooted than in its original run, the original pro-
cess identifiers might be in use (another process might own it).

Consider the following situation: a user logs in and starts a ft-application that consists of two pro-
cesses with identifiers 99 and 100. After a crash, the user logs in and starts a new system daemon
that receives identifier 99. The user then recovers the ft-application. The identifiers the recovered
process will receive are 100 and 101 since the original identifier of 99 is in use. Forcing identifiers
to their original values is therefore not possible.

A transparent process identifier mapping policy is therefore necessary for recovery. The job of
this policy is to note the original identifiers and to respond to system call queries with these num-
bers, bypassing or changing the results of the real system query code.

Each process has two identifiers, the mapped identifier, and the real identifier. The mapped identi-
fier corresponds to identitiers that existed in the original run of the application and may, or may
not, be different from the real identifier that is returned by the operating system. The mapping pol-
icy must maintain a global notion of the mapped identifiers and must also remain active for the

36

entire life of the application that has recovered. After a recovery is complete and a new process
has been created. the policy checks the returned real identifier to see if the application perceives
that identifier to already be in use (an application process has a mapped identifier identical to the
new real identifier). It it is not in use. the mapped identifier is set equal to the real identifier. Oth-
erwise to map to the real identifier, the mapping routine allocates a new mapped identifier that is
unique to the mapped identifiers in use by the application. Calls that act on identifiers must pass

through an inverse mapping (mapped identifier to real identifier).

3.3.8 Temporal Related Queries

Many programs have control flows that depend on system time or elapsed system time. The return
values of system calls that return temporal information such as the time of day must therefore be
journaled for replay during a recovery. System calls that make such queries either are bypassed
with journaled values used as return parameters, or are executed and the return parameters related

to time replaced with the journaled values.

[t a tailure occurs, a program that keeps track of time will notice a jump in time after recovery is
complete, from last journaled time to actual current time, as if the program had been suspended
for some duration. While this violates complete transparency of a recovery, alternatives such as
providing a seamless picture of time by subtracting an offset from the actual time after recovery,
have more severe problems. The two main requirements are that a recovering process sees the
times it saw in an original execution and that after recovery is complete the process sees the actual
time, making the current approach the most suitable.

3.3.9 Asynchronous Signals

Signals are events that consist of two types:

eself generated

ecxternally generated
A process self generates a signal when it performs some action that directly causes a signal to be
delivered to itself. For example, executing an illegal instruction causes an illegal instruction sig-
nal delivery; accessing an illegal address causes a segmentation fault signal to be delivered, etc.
Externally generated signals are delivered because of some action that another process has taken.
A wakeup signal that is delivered when the process has a message arrival on a socket is one type
of external signal. Another is a process kill signal that is sent from another process.

37

[t is clear that if an application follows the same control flow, it will always create the same self
generated signals at the same point in its execution. For this reason, these types of signals require
no special treatment in journaling and are merely ignored.

Externally generated signals cannot be ignored. When a process sends a signal to another process
during a recovery. it cannot be guaranteed that the signal will arrive at the target process at the
same point in its execution as it did in an original run. In the UX implementation of UNIX exter-
nal signals (other than process kill) only arrive when the target process makes a system call (note
that most UNIX implementations allow for true asynchronous signal delivery where a process
may be executing in its own address space when it receives a signal - a solution based on check-
pointing for these implementations has been developed, but is not covered here).

If signals were included in the event sequencing discussed previously, then all system calls would
require sequencing. This would result in potentially many more records being written to the jour-
nal, since typical applications execute about an order of magnitude more non-interprocess system
calls than ones that are interprocess in nature and therefore sequenced. It is therefore desirable to
avoid this, if possible.

The solution taken is to provide maximum control over external signal delivery by having pro-
cesses execute a sentry delivering signals to itself at the appropriate times. In UX a process will
recognize all externally generated signals only on a system call boundary. This means that it is
always possible to replay a signal at precisely the same point in the execution of a process during
a recovery. The signal delivery point is treated as an operating system entry point and thus, a sen-
try point exists there so that signals are visible to policies if desired.

Signals are journaled to separate signal journals that are created for each process of an applica-
tion. So as not to add extra complexity and overhead to the journal flush routine executed for
external input, signal files are asynchronously flushed whenever they are appended. This can
mean, however, that in a recovery the journal may be inconsistent with respect to signal files. To
avoid this, signals are tagged with the current global sequence number at the time of their cre-
ation. This is discussed in detail below.

When a process starts a recovery, it checks to see if a signal exists in this file and then prepares to
send it on the correct system call. After a signal is delivered a new signal, if one exists, is read
from the signal file. Only signals arriving on the correct system call are handled with all others
being ignored. Most externally generated signals will arrive twice - once from self delivery and
once from the external source - but will only be handled once and on the correct system call.

38

After a recovery is completed, any signals left in a process’™ journal with a sequence number [ess
than the tinal one at the end of recovery are all sent to the process at once. Signals that have
sequence numbers greater than the recovery sequence number are truncated trom the signal jour-
nal. This solution works because any signals that are generated by a ditterent process than the one
receiving it are gencrated on a sequenced system call, either a send signal call or a communica-

tions call.

A picture of why sequence number stamping of signals is necessary is seen in Figure 18§. In the
original run, Process A sent a signal to Process B that was received on a system call that was not
written to the journal. If after a recovery was complete, undelivered signals were simply truncated
from the signal journals, the signal that is seen would be lost. By tagging the signal with sequence
number n, the replay algorithm can see that the signal must be delivered to Process B at the end ot
recovery. Any signals that originated atter sequence number n+/ are then deleted from the jour-

nal.

Process A Process B

time

B Eventin journal — Signal that is replayed
Last event in recovery im Signal that is deleted
1 Eventnotinjournal e Recovery completed

Figure 18. Signal sequence number tagging example

The “put a process to sleep” signal has to have special handling. To explain this situation consider
the following: a process is put to sleep and then woken because some event occurs. In the recov-
ery, if the process puts itself to sleep it will never wake up to deliver itself the wakeup signal. For

this reason, all sleep/wakeup pairs of signals are disregarded during recovery playback.

Figure 19 presents high level pseudocode of the signal replay algorithm.

39

routine make_signal (current record)
begin /* make signal */
increment system call count;
if(system call count = next signal system call count)
begin /* if */
send_signal{this process) ;
next signal := read next signal;
if (no more signals)
begin /* if */
return;
end /* if */
/* ignore all sleep/wakeup pairs */
while(signal type = SLEEP)
begin /* while */
tentative signal := read next signal;
1f (no more signals)
begin /* if */
return;
end /* if */
if(tentative signal type # WAKEUP)
begin /* if */
next signal := tentative signal;
end /* if */
end /* while */
end /* if */
end /* make signal */

Figure 19. Signal replay algorithm
3.3.10 Time-outs

Programs often make system calls that are of a blocking nature with a specified time-out. For
example, the xclock program marks time by making a blocking system call with the time-out
parameter set to the rate that it updates the clock display. After the time-out, xclock makes
sequenced calls sending messages to the X server. If the blocking calls are replayed during a
recovery, the time-outs will be replayed as well. Because xclock makes sequenced calls, the
entire recovery will have to wait until the time-outs expire and xclock makes the calls before it
can continue.

These delays can be avoided however. During the original run the journaling policy can detect
time-outs and record their occurrence in the journal. During recovery, the blocked calls can be
bypassed and the time-out result returned. This optimization removes unnecessary blocking trom
a recovery and can speed recovery orders by of magnitude.

Consider a terminal that is left idle for fifteen minutes with an xclock running. If the time-outs

are re-executed in a recovery the user will have to sit through fifteen minutes of idle replay where

40

the only activity is the update of the clock. With the optimization described. the idle period would
be compressed to the maximum rate that the journal could be read and the clock updated. It the
clock update rate is every one minute, the fifteen time-out calls would typically be replayed within

seconds.

3.3.11 Disk Recovery

In the past, disk recovery has not been addressed by the majority of journaling and checkpointing
algorithms. It has been investigated in the context of checkpointing, but not any known journaling
algorithms. A persistent storage device such as a disk has become a cornerstone of modern com-
puting and it cannot be ignored in any practical tault tolerant solution. When a program is using a
journaling or checkpointing policy and making modifications to a disk, the modifications must be
undone at the start of recovery. If the disk is not restored properly, a disk related system call might
return a value different than that returned for the same call in the original run. Even one dittering

value can cause an application’s behavior to be different and cause the recovery to fail.

Past solutions to disk checkpointing [7], [35] have been based on restoring the disk using logical
disk blocks as the unit of recovery. The operating system’s view of a disk is that it is a contiguous
list of blocks that are allocated as needed to files and directories. Disk block checkpointing algo-
rithms come in one of two variations. In the first variation, a logical block that is about to be mod-
ified is copied to another block which becomes a backup block. When another checkpoint takes
place, the backup blocks are marked free and can then be allocated for another use. When a failure
occurs, the disk is restored to the checkpoint by copying the backup blocks back to their originat-

ing blocks.

In the second variation, a logical block that is about to be modified becomes the checkpoint of
itself. When a modification is made, the block being modified must be read into memory. The
modifications are made on the in-memory copy, and if at some time the block must be written
back to disk, it is written to a different block on the disk that is marked as current. When a check-
point takes place the disk is brought up to date by flushing the in-memory modified blocks and
copying the current blocks back over the original. To recover a disk checkpoint, all that must be

done is to mark the current blocks as free.

The drawback to these algorithms is that the file system structure must be modified by introducing
a new type of logical block, either the backup block or the current block. These new blocks
require the addition of a reference to another block. If the current disk data structures (block
header information) do not have the extra space on disk for the new reference field, then an entire
redefinition of the file system layout is necessary. Also, a disk that has been modified by the algo-

4]

rithms is no longer readable by a standard version of the operating system or by many standard
disk utility programs, and in some cases. a standard disk cannot be read by the modified kernel.
This can be problematic if the disk is shared by several machines, moved trom one machine to

another, or the machine is booted with the standard kernel.

The disk checkpointing algorithm introduced here overcomes this problem by using files as the
basic recovery unit instead of disk blocks. The algorithm is similar to the first variation above in
that betore a file is modified, the parts about to be modified are copied to a backup area. The algo-
rithm requires that sufficient space is set aside for backup purposes and that a special directory be
assigned for storage of backup information. It takes advantage of the fact that the only require-
ment in creating stable backup information is that it must be written to the disk before the actual
modification is written to the disk. If the modification were written to disk synchronously, then

backup intormation would have to be synchronously written first.

Modern computing systems use disk caches to improve average performance, so disk operations
are not synchronous. In UX, blocks in the cache are allocated in a least-recently-used manner. If
all cache blocks are in use and a free one is required, the least-recently modified blocks are asyn-
chronously written to disk as the algorithm searches for an unmodified block or waits until a mod-
ified block has been flushed. This flushing policy means that data that is written first, is flushed
first. Therefore, no special provision has to be made to assure that backup data is written to the
disk before modifications as long as backup information is written before the modification takes

place.

The algorithm must individually address each type of modification a file can undergo. This dis-
cussion is specific to the UNIX file system, but the principals are applicable to other file systems.
A UNIX file, f, is completely and uniquely defined at any given time with the state tuple <name,-
data,stats>. The name part of the file state is a textual string that uniquely identifies each file on a
disk. The UNIX file system is organized as a tree with a root directory at the root of the tree. Inter-
nal nodes are directories and leaves are either files or empty directories. Components in the name
separated by */”s identify the path down the tree to the leaf node that corresponds to a file. Figure
20 shows how a name is used to locate a particular file. Components with a “/” at the end are
directories. The data component of a file is just the actual data associated with the file, while szats
book-keeping state such as the time when the last modification of the file took place and the size
of the file.

During the course of a session a file may undergo a change in any one or all of these components
resulting in the end-to-end transformation: fi<name,data,stats> = <name’data’ stats’>, where
the right side is the state of the file at the time of a failure, and the left side is the state of the file at

42

/usr/mer/tmp/file
usr/
mer// \dingman/
N
tmp/ t!in/ lib/ bi{ \\src/
/" \
file filel

Figure 20. Example of a UNIX pathname

the time of the last checkpoint preceding the failure. To be correct, the disk checkpointing algo-
rithm must return all files from their end states to their starting states. Each component of the tuple
is restored independently and will be covered separately. Fault-free execution is covered first, fol-

lowed by the recovery procedure.

Identifying each file is an important issue that must be addressed first. Since names are not stable,
some other identification must be used. A simple numbering identification scheme is suitable and
is made possible by the tact that disk operations are ordered by the sequencing algorithm. This
means that all operations that access files will take place in the same order in a recovery as in the
original run. The first access to a file that indicates that the file may be modified invokes the
assignment of a monotonically increasing identifier. Since the order of first accesses to files will
be in the same order during a recovery as in the original run, each file will receive the same iden-
tifier in every run. Each file assigned a new identifier has its starting name (this is discussed later)
and stats appended to a file catalog file. It is necessary to immediately record the stats state in the

catalog because the file access may change this.

The name of a file undergoes changes in the form f: <name,data,stats> = <name’ data,stats>. A
file being deleted is a special case where name’ is null, and a file being created is a special case
where name is null. The disk checkpointing algorithm keeps track of each file by noting the trans-
formation in a special file called the rename log before the transformation is applied. While only
the checkpoint name and the last name the file had before a failure are important, a log is used so
that failures can be tolerated during a recovery. This is discussed in detail later.

Several special cases that must be handled. The case of deleting a file that existed at the check-
point is handled by moving the file to the disk backup area and renaming it with its identifier num-
ber. When a new file is created its original name is set to “new,” so that the restore algorithm
knows the file is new and can delete it in the checkpoint recovery. Finally, if a new file is created

43

and then later deleted. it is not moved into the backup area. The file's tinal name is marked as
“gone” in the rename log (this will be discussed further below). A sample rename file’s contents is
shown in Figure 21. In the example session that created the contents, the existing file /usr/mer/

tmp/file was renamed and then deleted. and a second file. Zusr/mer/tmp/file2, was created. Finally,

[1] /ust/mer/tmp/file => /usr/mer/tmp/filel
[1] /ust/mer/tmp/filel => /backup/[1]

[2] <new> => /usr/mer/file2

[3] <new> => /usr/mer/file3

[3] /ust/mer/file3 => <gone>

Figure 21. Example rename file

a third file, /usr/mer/file3, is created and then deleted. The bracketed numbers on the left are the
file identifiers.

The final component of a file’s state that must be restored is any modified portion of its data state.
The checkpoint algorithm keeps track of data by dividing files into fixed sized blocks (not related
to file system blocks). When a file is first opened for modification, a series of bytes are allocated
with one bit representing each existing block in the file. When one of these original blocks is
about to be modified, the original block is copied to a block log. The information written to the
block log is the file identifier, the starting position of the modification, the length of the data being
backed and the actual data. The bit representing that block is then set so that in case it is modified
more than once, it will be backed only once.

Files that are newly created do not have their data or stats states saved for recovery, but the check-
point algorithm must record changes to their name states so that the file can be deleted in a check-
point restore.

Recovery consists of four distinct phases. In the first phase the file catalog is read into memory.
This sets up the file identifiers. The second phase is the rename phase. To restore the name com-
ponents to the checkpoint, the recovery performs the inverse of each rename, starting at the last
one in the rename log, and works back to the first. When the target of an inverse rename operation
is “new” the file is deleted. When the origin of an inverse operation is the special name “gone,” it
indicates that this operation corresponded to a file that was created and then deleted. This means
that a delete of the file must be attempted in case the record of the delete made it to disk before the
delete, and then any more references to this file can be ignored. This is because the point would be
to eventually delete the file and that has already been done. After the completion of the rename
phase every file will be back to its starting point. Note that files that were deleted and are in the

44

backup area are copied in the inverse operation rather than renamed. This case will be covered in

further detail later.

After the rename phase comes the block restore phase. The block log file is read sequentially and
the data within it is written to the file it came trom. At the end ot this phase every file will have its
name and data states restored. This leaves the stats state. The original stars of each file were read
in with the file catalog and are now applied to each file. The access times are changed to their
original values and the size is also restored. The size adjustment truncates any data that was

appended to a file after the checkpoint.

The only part of the restore algorithm that must make special allowance for failures is the rename
phase. If a failure occurs during this phase, a file can be part way through the path it took from its
final name to its original name when a failure occurs. When the recovery is restarted the rename
restore algorithm will not find the file in its final position where it assumes it to be atter a tailure.
To tolerate this case, the algorithm goes through the rename phase ignoring any errors. When the
inverse operation is reached that corresponds to where the file ended up in the failed recovery, it
will be eventually picked up and moved back to its starting name. Files that were deleted and were
placed in the backup area must be copied instead of moved in their first inverse operation. If the
files were not copied and a failure took place after the recovery, file data that had not been backed

up in the block log would be lost.

During the recovery of the journal, the disk checkpointing algorithm is active exactly as it was
during the original run. Not only does this dynamically recreate the disk checkpointing data struc-
tures, it is necessary for toleration of another failure. The rename file, the block backup file and
the catalog file, are all preserved, but overwritten in place as the entries are dynamically recreated.
The reason for this is that backup intormation is not synchronously written to disk. This means
that when a failure occurs the data that has been flushed to the journal could be inconsistent with
the data that has been written to the disk checkpoint files. An example demonstrates the potential
problem: during the original run, a file is deleted. This results in the rename modification and the
rename log entry being written to the disk cache. Immediately following this operation, the user
enters a command on the keyboard, causing a flush of the journal, and this is followed by a system
failure. If the disk checkpointing files were not rewritten during the recovery, the rename log entry
would never be written to the disk. This is acceptable as long as the rename of the file does not
reach the disk, but after the recovery is complete this is likely to happen. As a result, if another
failure occurred, the disk would not be successfully restored to the checkpoint state because a

name transform would be missing from the rename file.

45

During recovery system calls that query a time related stat of a file, have the stat replayed from the

journal and the file 1s changed to reflect the time that was returned. This insures that a file's stats

alter recovery are the same as the application perceived them.

The disk checkpoint algorithm’s fault free execution routines are shown in Figure 23 and Figure
24 with a basic support routine to allocate new file control blocks in Figure 22. The algorithms are
all executed in the journal policy entry sentries for system calls that modify parts of a file’s state.

routine new_filecb(file stats)
begin /* new filecb */
/* get a new file identifier */
number of filecbs := number of filecbs + 1;
allocate a new file control block;
new filecb id := number of filecbs;
hash the new filecb according to the file’s name;
if(file is new)
begin /* if */
record in filecb that file is new;
end /* if */
write filecb and id to catalog file;
end /* new filecb */

Figure 22. Disk checkpoint support routine

Disk restore algorithms are shown in Figure 25 and Figure 26. The disk_restore () routine is
called at the beginning of recovery before the processes are started.

The pertormance of this algorithm should be virtually identical to the first variant of the logical
block algorithm because they are essentially the same. Additional in-memory data structures are
required by the file based algorithm, and some extra disk space is required to manage the backup
files. This overhead is small when compared to backup information and disk operations. The file
based algorithm’s advantage of visible backup information, and no file system modification or
modification to low-level disk routines make it more versatile and practical to implement.

Proofs of the correctness of the disk checkpointing algorithm are presented below. Some of the
proofs are trivial, but are included for completeness. The lemmas set out to prove that each com-
ponent of the state of every file that exists at the time of a checkpoint is restored by the algorithms.
Finally, a theorem combines these to prove that the entire state of the disk is restored.

46

routine file name mocdify({old_name, new_name)
begin /* file_name_modify */
filecb := lookup old name in hash table;
if(filecb = NULL)
begin /* if */
filechb = new_filecb(old_name);
end /* if */
remove filecb using old_name from hash table;
/* 1is it a delete operation? */
if (new_name = NULL and file isn’t marked new)
begin /* if */
move file to backup area;
end /* if */
/* deleting a file that is marked as new? */
if (new_name = NULL and file is marked new)
begin /* if */
new_name = “gone”;
end /* if */
/* is 1t a new file creation? */
if(old_name = NULL)
begin /* if */
old_name = “new”;
end /* if */
filecbhb’s current name := new_name;
append file’s filecb id, old_name and
new_name to rename file;
hash the filecb according to current name;
end /* file name_modify */

routine file_data_modify(name,start, end)
begin /* file data_modify */
filecb := lookup name in hash table;
if(filecb = NULL)
begin /* if */
filecb = new_filecb(name);
end /* if */
if(filecb isn’'t marked new)
begin /* if */
if (end > file’s original length)
begin /* if */
end := file’'s original length;
end /* if */
write any blocks between start and end that haven't
been backed already:
mark the newly backed blocks as backed;
end /* if */
end /* file_data_modify */

Figure 23. Disk checkpointing algorithms (a)

47

routine file_stats_modify(name)
begin /* file_ stats_modify */
filecb := lookup name in hash table;
if(filecb = NULL)
begin /* if */
filecb = new_£filech(name);
end /* 1if */
end /* file stats_modify */

Figure 24. Disk checkpoint algorithms (b)

Lemma 1. The disk checkpointing algorithm restores the name state of the disk checkpoint.

Proof. The name state of the disk, D, at any given time is defined by all f{name) € D. During
the period between a checkpoint where the disk has the state D, and a failure where the disk has
state Dy, the name state of the disk is moved through n-1 intermediate states with the individual
transforms t;(f) = (f:name = frname’), i = 1..n, resulting in D;_; = D;. Given the state D;, and the
application of the inverse transform ¢/(f) = (f-fname’ = f:name), the state D;_; is reached. Since
each transform, ¢;, is recorded in the journal, the restore algorithm can work backward starting
with state D¢ and by applying the inverse of each recorded transform, ¢';, eventually reach state
D.. |

Lemma 2. The disk checkpointing algorithm restores the stat state of a file that existed at the

checkpoint.

Proof. Every file that has its stat state modified has the original stat state stored in the catalog
file. After all other components of the file states have been restored, the files have their original
stat state read trom the file and restored. n

Lemma 3. The disk checkpointing algorithm restores the data state of a file that existed at the

checkpoint.

Proof. There are two cases to consider. The first is that a file’s data has been appended with
additional data. This additional data causes a change in the size of the file that is part of the stat
state. Lemma 2 states that the stat state is restored, thus removing this additional data by truncat-
ing the file to its original size. The second case is that the existing data starting at position p, and
of length I, is overwritten. Before the modification is made, the original data of the file f:data(p.)

48

routine read_file_catalog{)
begin /* read file catalog */
number_of_ files := §;
while(not end of filecb catalocg)
begin /* while */
read filecb from file catalog;
newfilecb = new_filecb(file name) ;
number_of files := number_of files + 1;
filechb_arrayinumber_of_files] := newfilecb;
end /* while */
end /* read file catalog */

routine name restore()
begin /* name_restore */
move to end of rename log;
while(not at beginning of rename log)
begin /* while */
read filecb id, old_name and new_name;
filechb = filecb_array[filecb id];
/* files marked “gone” were deleted */
if(filecb is not marked “gone”)
begin /* if */
if (new_name = “gone”)
begin /* if */
mark filecbhb as gone;
end /* if */
else
begin /* else */
if(old_name = “new”);
begin /* if */
delete old_name;
end /* if */
else
begin /* else */
if (new_name indicates its a
backup file)
begin /* if */
copy backup file to old_name;
end /* if */
else
begin /* else */
/* standard case */
rename new_name to old_name;
end /* else */
end /* else */
end /* else */
end /* if */
end /* while */
end /* name_restore */

Figure 25. Disk restore algorithms (a)

49

routine data_restore()
begin /* data_restore */
while(block backup is not empty)
begin /* while */
read fileid, start, end and data
from block backup file;
write to filecb_array(fileid]
at position start the data;
end /* while */
end /* data restore */

routine stats_restore()
begin /* stats_restore ¥/
for(index := 1 to number of files)
begin /* for */
restre stats of filecb_array([index];
end /* for */
end /* gtats_restore */

routine disk_restore()
begin /* disk_restore */
read_file_catalog():
name_restore() ;
data_restore();
stats_restore() ;
end /* disk_restore */

Figure 26. Disk restore algorithms (b)

is saved to the block file. During recovery, the original data f:data(p,l) is read from the block file
and written over modified data, thus restoring the data state of all files. |

Theorem 2. The disk checkpointing algorithm restores the state of the disk.

Proof. The state of a disk, D, is defined by the state of all files finame,data,stats) € D. To
restore the disk state from Dy, the state at the time of failure, to D, the state at the time of the
checkpoint, every file flname’,data’,stats’) € Dy must be restored to finame,data,stats) €D,.
Lemma | states that f{name’) € Df is restored to finame) € D, Lemma 2 states that f{data’) € Df is
restored to f{data) € D, and Lemma 3 states that f{stats’) € Dyis restored to fistats) € D,. Thus, all
three components of every file is restored, implying that Dyis restored to D,. |

3.3.12 Partial Replay

Journal recovery provide opportunities for tolerating “user failures” that have not been invest-
gated previously. By only replaying a portion of a journal in recovery events can be “undone.” For

50

example. say a user inadvertently deletes important disk files or enters commands into a program
that destroy work that has been done. To undo the erroneous action, the user would specity that
the recovery stop immediately before the action was to be replayed. The system state would then
be as if the user had never performed the action.

Specitying partial replay is more a user-interface issue than a research issue. Several different
types of data can be used as hooks for replay. One approach is to artificially place timestamps in
the journal and to then specify recovery as proceeding up to the end of the journal minus a time
offset. Another is to use command entries as indices. The recovery could then be specified in
terms of the number of commands rot to replay. Other possibilities and variations exist with many
different types of dynamic recovery control being feasible. This work does not investigate this
further, but the timestamp method was chosen for implementation and served as proot of the con-
cept.

Once a replay has finished, the journal and all disk checkpointing files are truncated at their cur-
rent sizes. This erases any un-replayed events from the journal and disk checkpoint.

3.3.13 Naming Conventions

A final issue is how to organize the journal, signal files and disk files on the disk and how to spec-
ity a recovery. The naming convention is a user interface issue rather than an efficiency issue, and
an infinite number of schemes could be used. To organize data for easy debugging, a special
backup directory, /ftback/, is dedicated for journaling and checkpointing. In this directory the
application creates journaling and disk checkpoint directories that it tags with the root process
identifier of the application. For instance, journal.234/, and disk.234/ are the directories that root
process 234 creates. Within the journaling directory are the journal itself, journal, and the signal
files, like sig.444, which would be the signal file for process 444.

In the disk checkpointing directory are the catalog file, fileindex, the block backup file, block. and
the rename file, rename. The recovery is started with a call to £texecve that includes the recov-
ery library sentry mask and the process identifier of the root to recover.

This naming scheme allows multiple applications to be running concurrently and to share the

same backup directory without conflict.

3.4 Journaling/Recovery Examples and Performance

This section presents performance measurements taken for the journaling policy and the journal
recovery policy. The overhead of the sequencing algorithms is highly dependent on dynamic char-

51

acteristics of an execution. Process system call interleaving, rate of mouse and keyboard input,
and amount and type of system calls are all factors influencing performance. Disk checkpointing
overhead is much less variable and can be reliably measured, although the overhead caused by
disk checkpointing for a given application depends on the amount, rate and type of disk opera-
tions being pertformed.

This section is divided into a subsection summarizing measurements of overhead tor external
input and communications bound applications, and a second subsection summarizing measure-
ments of overhead for disk checkpointing. Measurements of specific actions such as repeated file
read operations only serve to measure instantaneous overhead, while application session measure-
ments serve only to give an idea of how a typical application performs. As with any technique that
depends on a large number of variables such as the application characteristics, extra load on the
system, hardware configuration hardware speed, and checkpoint interval, the results will vary
even with the same application running on the same machine.

Before the measurements are presented, two figures are shown to provide a general idea as to the
mix and types of system calls that are in a journal that has been generated by a run of X with cli-
ents. Figure 27 lists a portion of the journal from the X session experiment while Figure 28 gives
a profile of records in the journal. In Figure 27, the numbers in the brackets on the left are the glo-
bal sequence numbers of each record. The next number, in braces, is the process identifier of the
process that executed the call. Next is the system call name corresponding to the record type, fol-
lowed by any additional parameters, such as the process identifier returned by the fork in the

first record listed.

In Figure 28 the number of records that were read from the journal is printed on the first line of the
profile, followed by the greatest sequence number that was read. Statistical information below is
related to the mix of system calls in the journal. The list of types of calls is sorted in decreasing
order according to the total amount of space taken in the journal by the specified call type. The
system call using the most space in this case is read() with a total of 944 records. Of these 944
records, 308 had additional information besides the standard journal entry. The additional infor-
mation in this case includes mouse and keyboard input data. The right-most column lists the
amount of journal dedicated to the system call in bytes (for reads, 13940 bytes), and the per-
centage of total journal size this number represents (31.2% of the journal is for reads). At the
bottom, the total size of the journal, the amount of journal used by the standard journal record
(60.92%) and the size of a standard record (8 bytes) are printed. The fact that 60.92% of journal
space is for the standard records means that 39.08% of the journal is used for the storage of addi-

52

7> fork: 2628
7> walt: retval:8
0 stat: 0
8> creat
28> gettimeofday time: 774812775.830000
28> fstat: retval: 0
atime: 774643031
mtime: 760071192
ctime: 764980760
[25] <2628> stat: retval: 0
atime: 774797451
mtime: 755370246
ctime: 760065704
[26] <2628> stat: retval: 0
atime: 774643258
mtime: 755370246
ctime: 760065704
[27] <2628> stat: retval: 0
atime: 774797451
mtime: 755370586
ctime: 760065790
[28] <2628> stat: retval: 0
atime: 774643258
mtime: 755370587
ctime: 760065790
[29] <2628> stat: retval: 0
atime: 774797451
mtime: 755370396
ctime: 760065742

)

Figure 27. Example portion of a journal

tional parameters like time values and external input data. This information was useful in estab-
lishing the priorities of system call journaling optimization efforts.

3.4.1 Journaling Measurements

To date, there are no standard user-interface benchmarks so several scenarios were selected that
together provide an overall view of journaling performance. The vast majority of UNIX worksta-
tions in use run the X-window system. For this reason, all measurements were made in the X
environment. The application model encompasses X and any programs run under X such as

xterm, csh, and gnu-emacs.

In evaluating the journaling policy, the cost of two components must be determined. First, inter-
process communication causes journaling to record event order. Second, external device input

53

end of £ile - 3402 calls

done - 3402 total calls (maxglob: 9127)

————————————————————————— STATISTICS -~ - mm e e e e e e
call number memory usage
read: 944, 308 13940 (31.2%)
gettimeofday: 662/ 662 10608 (23.7%)
select: 1179/ 289 10262 (23%)
stat: 211/ 184 3896 (8.72%)
fstat: 156/ 156 3120 (6.98%)
write: 83/ 0 664 (1.49%)
wait: 20/ 20 608 (1.36%)
ioctl: 44/ 0 352 (0.788%)
exit: 22/ 0 176 (0.394%)
fork: 17/ 17 170 (0.381%)
setitimer: 8/ 5 144 (0.322%)
open: 13/ 0 104 (0.233%)
frgettime: 127 0 96 (0.215%)
execve: 6/ 0 48 (0.107%)
fentl: 6/ 0 48 (0.107%)
close: 5/ ¢ 40 (0.0895%)
connect: 5/ 0 40 (0.0895%)
creat: 3/ 0 24 (0.0537%)
interrupted: 3/ 0 24 (0.0537%)
dup?2: 2/ 0 16 (0.0358%)
globinc: 1/ 0 8 (0.0179%)

——————————————————————————— TOTALS---=-==mm-——mm——mmm——mmmmm— -
total: 3402 mem: 44677 header:1155

base mem: 27216 (60.92%)
record size: 8

Figure 28. Profile of X session

causes journaling with the two types of external input on most workstations being a keyboard and
a mouse. With this information in mind four tests were selected:

X initialization
emouse movement
ekeyboard input

e X session

This section describes and presents the results runs of each test with:
1. No policy enabled
2. Basic journaling
3. Run-length optimization

54

[n cach case. times are shown tor the journaling policy and the recovery policy. In addition. the
size of the journal, the number of journaled calls. and the number of processes involved in the test
are listed. All table time values are in seconds and all size values are in bytes representing aver-

ages of 10 executions of each test. [n all cases the deviation from the average was less than 1%.

For cach individual journaling test. times are shown tor both synchronous journaling to the disk
and asynchronous journaling. Synchronous journaling is used if full recovery ot every journaled
event 1s desired and there is no stable memory. Asynchronous journaling approximates results that
would be obtained if the journal were butfered in stable memory before being written to disk.

The start-up of X involves on the order of 20 processes. X start-up occurs when the xinit pro-
gram is run and is considered complete when an xclock and an xterm window have been cre-

ated and a cursor appears in the xterm indicating that input can commence. Figure 29 is a picture

{(@Fite) [Edit) Flisnane: (none) Basenane: (rone> Size
e Py
iC Clmar D
4 Trwart]

¢ Hark 3
(T Omark)
o

U] W——

E®=

QY@

FIiLod Rectaais)
CElzarox Spot)|

Figure 29. X startup with Bitmap application

of X after start-up where the user has run the bitmap interactive bitmap editor. Measurements

taken in this test to showing degradation due to sequencing and event ordering of communication

hN

calls are summarized shown in Table 1. Both imes and journal sizes are averaged over several

runs and are rounded to the nearest second and 100 bytes respectively.

asynchronous synchronous
of recovery
X Initialization procs time | journal | time | journal time
(sec) (bytes) (sec) (bytes) (sec)
no journaling 5.5 - - - -
basic journaling 20 6.0 28100 218 28900 S
run-length opt 8900 180 22400

Table 1. X start-up performance

Journal sizes are larger for synchronous journaling because flushing on each record causes more
context switches, and therefore fewer chances for run-length compression. This effect is seen in
all of the tests.

X start-up time increased from 5.5 seconds without journaling to 6.0 seconds when asynchronous
journaling was enabled introducing roughly a 9 percent degradation. The measurements indicate
that synchronous journaling is totally impractical since it would result in degradation of almost
two orders of magnitude. The table also shows that run-length compression results in a 60%

reduction in journal size.

Test results summarized in Table 2 are the result of continuously moving the mouse from the top
to the bottom of the monitor screen and back for 60 seconds. Degradation effects due to journal-
ing overhead is not so much evident in latency of moving the mouse from one position on the
screen to another, but more in the number of times the mouse is sampled per unit of time. A lower
sampling rate results in jerky mouse motion. Another type of journaling is introduced here called
semi-synchronous journaling. Semi-synchronous journaling is the name given to the input related

semi-
asynchronous synchronous synchronous
of recovery
Mouse Input procs | event | journal | event | journal | event | journal time
(bytes) (bytes) (bytes) (sec)
=
no journaling 2420 - - - - - -
basic journaling || 3 2410 | 235200 | 32 | 60300 | 2380 | 233700 7
run-length opt 2420 | 168600 32 34300 | 2380 | 161900

Table 2. Mouse input performance

56

flushing strategies discussed earlier in this chapter. No measurements are shown ftor semi-syn-
chronous journaling in Table | because there is no input during this test. If the test were run with
semi-synchronous journaling results would be identical to the asynchronous case. It is exciting to
note tfrom Table 2 that there is only about a 3% degradation for semi-synchronous journaling with
respect to no journaling. Recall that with semi-synchronous journaling the fault tolerant guarantee
is that at most two mouse samples will be lost in a failure. This level ot overhead is virtually

undetectable by users.

The last number in Table 2 is the replay time tor the asynchronous and semi-synchronous cases.
Replay compression results in almost a 10 to 1 reduction in time versus the original run 60 sec-

ond.

The keyboard input test measures the cost of journaling and replaying keystrokes. Test data is pre-
sented in Table 3. Keyboard journaling was visible during a run as the delay between keystrokes
and the appearance of characters on the screen. For each run in this test, keyboard characters were
entered at the maximum rate for 60 second where the typing rate was reduced to the rate of char-
acter output. Thus, the higher the journaling overhead, the longer the time to type the characters.

synchronous semi-synchronous asynchronous
of rcvry
Keyboard Input procs | events | journal | events | journal | event | journal | time
(bytes) (bytes) (bytes) (sec)
no journaling 665 - - - - - -
basic journaling 3 32 11300 | 665 | 164000 | 665 | 164900 | 5
run-length opt 40 11900 665 78600 665 79000

Table 3. Keyboard input performance

Semi-synchronous overhead for keyboard input is not measurable and, like the mouse experi-
ment, there is about a factor of 10 compression for the replay compared with the 60 second origi-

nal run.

This final test consisted of an interactive session using elements from all of the above tests. The
X-window system was started, a gnu-emacs editor was opened and a file edited that required a
number of modifications. The editor was then closed and X exited. Keyboard input was again lim-
ited to the display rate, as in the keyboard test. This example illustrates performance of the system

under practical working conditions

Measurements are shown in Table 4. In the semi-synchronous case, which provides fault tolerant
guarantees, the degradation is essentially undetectable. Recovery is 6 times faster than the origi-

57

nal run. The test indicates that on average. journal growth rates of 50-100 KB/s can be expected

under typical working conditions.

synchronous semi-synchronous | asynchronous
of recovery
X Session procs | time | journal | time journal | time | journal time
(sec) | (bytes) (sec) (bytes) (sec) | (bytes) (sec)

no journaling 60 - - - - -
basic journaling || 2! | 424 | 78600 | 60 | 109700 | 60 | 100600 10
run-length opt 422 | 68400 60 56500 60 42900

Table 4. X session performance

3.4.2 Disk Checkpointing

The disk checkpointing algorithm can cause overhead in the following disk operations:

erenaming a file

screating a new file

deleting a file

emodifying a a file
Whether or not the operation results in overhead depends on a variety of factors. For example,
opening a file for modification only causes the overhead of a write to the name file the first time
this operation is performed for a particular path name after a checkpoint. Also, if a file is modi-
fied, the conditions for the disk checkpointing algorithm to cause an overhead are that the part of
the file being modified existed at the time of the checkpoint and that this is the first time that part
has been modified since the checkpoint. For these reasons, the typical file system benchmark
which creates a file, writes data to it, and reads it back, will, under most circumstances, not incur
any disk checkpointing overhead.

Under all but the most extreme circumstances it can be safely stated that disk checkpointing over-
head will be negligible. This is due to several reasons. A crucial one is that most applications do
not modify existing portions of files. For instance, when a user edits a file with the gnu-emacs
editor, the editor reads the existing file, performs modifications on an in-memory copy, and when
the modifications are saved, it writes out a completely new file, renaming the old file to a backup
name. Also, disk intensive applications are rare and usually involve appending data to a new file
which does not result in overhead. Finally, modifications that do cause overhead are likely to be
undetectable because they are infrequent (creating a new file, for example) with respect to the rest

58

of the computation and due to the asynchronous nature of disk operations will occur in parallel

with other operations.

While in most cases it is true that disk checkpointing will not result in overall overhead, it is nec-
essary to obtain some measure of degree of its instantaneous overhead. A suite of artificial pro-
grams were written to stress the components of disk checkpointing mentioned above. For
instance, to measure the overhead of creating a new file. a test program created a varying number
of files. and the overhead per file created was calculated with disk checkpointing both enabled and
disabled. Resulting curves provide insights into disk checkpointing overhead trends.

A total of five test programs were written to measure the overhead of:

«file creation

«file deletion

e file renaming

+modifying existing portions of a file
Figure 30 presents file creation test results.As the number of files created increases checkpoint
time per file goes up. This is because in UNIX directory searches are linear, so that as the number
of files goes up, linear search time goes up. In addition, additional disk blocks are allocated for the
directory as more files are created. A typical directory will contain on the order of a hundred files
or less, so the points to the left of the graph are most representative of the typical create operation.
Disk checkpoint create takes roughly four times what the native file create takes.

The next tests measured the overhead of delete operations. Results are summarized in Figure 31.
In these tests files that were deleted existed before the tests were run. Again, the more files that
exist, the higher the overhead due to the linear directory searches. Delete operations in native
mode are inexpensive because deallocation of disk blocks merely involves changing their status.
This is unlike the create operation where a free block must be found and a variety of pointers allo-
cated. When the disk checkpointing policy is active however, the absolute time is roughly equiva-
lent to the measurements taken in the file creation operation because disk checkpointing book-

keeping operations are identical for both create and delete operations.

Rename overhead is again relatively high with a rename operation for a typical directory taking
about 5 times longer than a native rename as shown in Figure 32. The disk checkpointing algo-
rithm again must do the same book-keeping as for file deletion and creation. Once again, linear
directory searches cause both native and disk checkpointing times to go up as the number of files

gOes up.

59

(.‘

{

0.0 ——m—mm—m————p4——m—m—v— 74— —+———r7——

0.025

»—xdisk checkpointing i
o—oNative 1

A

0.020

0.015

71T

Time Per Create (s)

0.010

Y
1

0.005 i

e

0.000 0 500 1000

Number of Files Created

1500 2000

Figure 30. File creation overhead

Final tests involved modifying existing files. The test program took a 3 megabyte file and sequen-
tially overwrote it using selected size blocks. Different runs were made with varying block sizes.
The initial file was large enough so that the modifications could not be cached and resulted in
actual writes to the disk. Results are shown in Figure 33. Times shown are the time required per
write operation and naturally increases as the block size of the write operation increases. It
increases more linearly for disk checkpointing because of the additional disk operations. For most
block sizes this represents a factor of two increase relative to the times required for native file
modifications.

As a closing note on the disk checkpointing measurements, it should be emphasized that the high
overheads obtained (2-5) for disk checkpointing with respect to native operation times will proba-
bly be negligible in typical application sessions.

3.5 Checkpointing Issues

There are two problems that prevent journaling from being a truly practical stand-alone policy:
journal growth and recovery latency. As events occur during an application session, the journal

will continue to grow, and given enough events, would eventually consume all available disk

60

0.020 T T T 1 T
0015 r i
_ »—X Disk Checkpointing .
f G—®O Native
= !
=
2 0010 F]
2 b
a
%]
£
=
0.005]
3 ~ o~ o C C \>
o—e—6—6—©
OOOO i " i i Il i " A i 1 i A " A L " i A "
0 500 1000 1500 2000

Number of Files Deleted

Figure 31. File deletion overhead

space. The second issue becomes a problem for long running applications. For a recovery there is
no time compression for compute bound segments of code. As the length of the original run
grows, so does recovery time; and, as recovery time grows, so does the probability that it will not
be useful to recover the state of the application using the journal. For instance, if a compute inten-
sive application has run for 24 hours, a recovery that takes 22 hours is likely to be unacceptable.

An appropriate checkpointing policy solves both of these problems. If an application’s state is
periodically saved, the journal can be cleaned. This reduces data storage requirements to the size
of two checkpoints and a journal, instead of being unbounded. The amount of space allotted tor
the journal can be capped, such that when the cap is reached a checkpoint is automatically taken
that deletes the old journal and begins a new one.

At the time of recovery the application is first restored to its most recent checkpoint followed by
journal recovery to bring the application back to the state that existed at the time of the failure. It
checkpoints are taken every thirty minutes, the average recovery time will be fifteen minutes or

less, regardless of the total duration of the session.

61

(.050 T T T T
[K
L *—X Disk checkpointing
0.040 F G—© Native =
2 00301 .
2 L J
g !
e r
5
a. r
é 0.020 P)
= L 4
3 1
0.010 .
F 1
OOOO r " " i A i " " 1 i i J. i i s i]
0 500 1000 1500 2000

Number of Files Renamed

Figure 32. File rename overhead

The same application model assumed for journaling is assumed for checkpointing. As with jour-
naling, there are several issues that must be addressed for a checkpointing implementation. They

include:
enaming strategy
e memory checkpointing
disk checkpointing
e operating system checkpointing
etaking a snapshot
edevice checkpointing
echeckpoint interval
checkpoint recovery

This section discusses each of these areas.

62

0.015 — T —_—— T
L 3
*—X Disk Checkpoint
G—®© Native
0.010
P
= D
&
£
=
0.005
OOOO Y i i A 1 A e i 1 A i .
0 256 512 768 1024
Size of block (bytes)

Figure 33. File overwrite overhead

3.5.1 Naming Strategy

This is the easiest issue to deal with. Naming refers to the convention used to identify files that are
related to difterent checkpoints, devices, and processes. The approach taken is to organize all pro-
cess related checkpoint files into one directory that is tagged with the application’s root process
identifier. For example: /ftback/mem.432/. Device related files are also placed in a separate direc-
tory like /fthack/dev.432/.

The strategy taken for individual checkpoint files is to add the process identifier the file is associ-
ated with to the name of the file, and add as a suffix the checkpoint interval. For example, the sec-
ond checkpoint of the process control block of process 768 would have the name proc.768.2.

3.5.2 Memory Checkpointing

Modern applications have become very memory intensive compared with the applications of just
a few years ago. Applications such as X, that are made up of many processes, can have on the
order of several megabytes of virtual memory in use at a given point in time. Saving the entire
address space of each process at every checkpoint would be extremely inefficient. Fortunately
incremental checkpointing [35], a technique where only those parts of the system that have

63

changed since the previous checkpoint are saved. can be used instead. substantially reducing disk
space and performance impacts.

Mach 3.0 allows a process to use a pager that 1s external to the kernel to manage its memory. The
checkpointing implementation relies on this feature by adding memory management to UX. Pro-
cesses run with the checkpoint policy in eftect use the UX pager to keep track of page modifica-

tions.

An implied checkpoint exists at the start of an application. It includes disk checkpoint and the pro-
gram command, parameters, and environment variables that started the application. This is the
same as the initial journal checkpoint. After a process has started, the pager keeps track of any
modifications on a page by page basis. At a checkpoint these modified pages are saved to stable
storage. The checkpoint is complete, or committed, when all modifications have been saved. At
that point the journal can be cleared and the previous checkpoint erased.

At the time of recovery, a process is loaded as it would be if it were started for the first time. Its
address space is then allocated and copied from the checkpointed memory information. After this
has been done for each process in the application, the entire memory space of the application has

been restored.

The stable storage medium plays a role in determining how to organize checkpoint data. In a disk
based system such as the one implemented, practicalities have to be faced. Ideally, a separate file
would be dedicated to each page. Unfortunately, this is not feasible in the UNIX file system.

Consider an application that uses 6 megabytes of memory. In the typical system the page size is 4
kilobytes. This would mean that during a checkpoint there would be 3072 files in the checkpoint
directory (1536 files for the old checkpoint and 1536 files for the new checkpoint). Each file
requires an inode, or special disk block, that provides a map of the file’s data. Inodes are a limited
resource in the UNIX file system, since only a fixed number exist. This fact, coupled with the fact
that directory searches are linear, make 3072 files, or even 1536, impractical. Performance of
operations on a directory with so many files would become severely degraded and inodes would
become a scarce commodity.

To make disk based checkpointing practical, pages are divided up among a fixed number of files.
In the system implemented, a process’ pages are managed as a hash table. When a page is needed,
the hashing function is applied to locate the appropriate bucket, and a linked list is traversed to
find the requested page. This hash table maps perfectly to the file limit solution. For example, if
the hash table has 25 entries, a process will create, at most, 25 files in a memory checkpoint. All
the pages in a bucket are written to the bucket’s page file. The number of files is then a function of

64

the number of processes in the application. rather than the amount of memory used. If there are 10

processes. at most 250 files will be created.

When a page is modified. the entire list of pages in the modified page's hash bucket must be
checkpointed again. This indicates that it would be advantageous to put pages that are spatially
close into the same bucket. Then if an application touches only a small localized set of pages
between checkpoints, the number of buckets that will have to be checkpointed will be minimized.
The hashing function that achieves this is:

hashbucket = (pagenumber/LOCALPAGES) mod NUMBUCKETS

where the LOCALPAGES is the number of pages grouped together and NUMBUCKETS are the
number of buckets in the hash table. If LOCALPAGES were 10, for instance, page Iwould map to
bucket 0, as would pages 2-9. Page 10 would then map to bucket 1. Figure 34 shows an example
hash table and the layout.

Hash Table Pages

0
1
2

Hash Function:

(pageno/10) mod 25

Figure 34. Example hash table

In addition to placing the pages on disk in easily identified files, it is also necessary to know which
files belong with which checkpoint. Since incremental checkpointing is used a page file from the
first checkpoint may be the current file even after 6 checkpoints. If a failure occurred during a
checkpoint, the recovery procedure would have to perform a search of the directory to find the
most recent checkpoint for each hash table entry. This is avoided through the use of a process
page catalog. When a checkpoint is taken this file is written out for each process (e.g. page-
cat.432.4). The catalog has an entry for each bucket in the hash table that identifies the most
recent checkpoint of that particular bucket. For example, it a process touches a page in hash table

65

entry () before the first checkpoint and then doesn’t touch it again. the Oth entry in its page catalog
would be 1.

3.5.3 Disk Checkpointing

The mechanism that performs disk checkpointing works in conjunction with the journal disk
recovery algorithm. At checkpoints, all information that has been saved by the journaling policy
is deleted, and all data structures that monitor the data that was saved are cleared. The size of files
that are open are noted and this is then used as the initial size when rolling back to the checkpoint.

To recover the disk to a checkpoint, the same procedures are followed as in the journal recovery
policy.

3.5.4 Operating System Checkpointing

When a process is checkpointed, operating system data structures such as the process control
block, communications structures and file descriptors opened by the process, are saved to a file.
This file contains the “brains” ot the process. The only issue that needs to be addressed is resource
identifiers during a recovery. Many operating system data structures contain pointers to other
structures. When a process is allocating data structures during the recovery it is extremely
unlikely that it will get the same data structures it had in the original run. For this reason a fixup
data structure is used to record the location of pointer references that cannot be resolved until after
all processes have been recovered.

A visible example is the application’s family tree. Each process control block contains pointers to
the process control blocks of the process’ parent, child, older sibling and younger sibling. As the
recovery proceeds the mapping of old process identifier to new process control block is recorded
in the fixup data structure. Instead of storing process control block pointers in the family tree
entries, the old process identifiers are recorded. As one of the final phases of the recovery, a fixup
routine goes through each process recovered and changes the family tree pointers by looking up
the old process identifiers in the fixup mapping table and replacing them with the new process
control block pointers. This same process occurs for other less visible structures such as terminal
and communications control data structures.

3.5.5 Taking A Snapshot

Taking a snapshot of the application involves obtaining a view of each process that is consistent
with an overall view of the application (consistency is covered in greater detail in Chapter 4).
Basically, this means that if one process was checkpointed with a state indicating it received a

66

message trom another process. the other process’™ checkpointed state must reflect the fact that it
has sent the message. A second factor that must be addressed is that all of the processes must be in
checkpointable states. A checkpointable state means that a process is in a state that is self con-

tained and can be readily reproduced during a recovery.

When the checkpoint routine looks at a process to see it it can be checkpointed the process can be

in a variety of different states:

4. executing in its own address space

5. in the entry or exit of a system call

6. temporarily blocked in a system call

7. semi-permanently blocked in a system call
The first case is a trivial one to handle. The process must be frozen and a snapshot of its registers,
operating system data structures and address space must be made. To recover the process a new

process must be created and loaded with the saved data.

The second case is not as easy to deal with. When the process is executing a system call, its regis-
ters and address space reflect the fact that it is waiting for the call to return. The process’ operating
system data structures might be in the process of changing or about to change depending on the
operations of the system call. To recover a process in this state the operating system thread that is
servicing the system call must also be recovered. While this might seem easy, it actually intro-
duces a great deal of additional complexity that should be avoided. It is therefore desirable to have
the process move out of this state and into another one that can be checkpointed such as the first
case.

The third introduces additional levels of complexity. A process that made a system call to read
data from a file might be waiting for the call to return. The operating system thread servicing the
call could be temporarily blocked while it is waiting for the disk to provide the requested data.
The state of the process is therefore spread across its user space, the operating system, and the
device involved in the system call (in this case the disk drive). It is impractical, or in this case
impossible, to checkpoint the dynamic characteristics of the device. If the disk drive were to be
checkpointed, all the device driver routines would need to be checkpointed and the recovery rou-
tine would have to be able to reset the disk to be reading the exact byte it was reading at the time

of the checkpoint.

The last case is similar to the previous one. A process will be in a semi-permanent sleep if it has
made a blocking request for data from a communications port and the port is empty. The process
will wait indefinitely for data. This case can be detected by looking for the process on the operat-

67

Ing systems semi-permanent sleep queues. Again. checkpointing the process would mean that the

operating system would need to be checkpointed.

So, how are the dilemmas of cases 2-4 to be solved? The first key to the solution is to realize that
if @ process is in a semi-permanent sleep (4), and the system call that lead to the sleep was
restarted given the same conditions, that the process would again enter the sleep. Next, processes
in cases 2 and 4 will, within a bounded period of time (provided there is a tair scheduling algo-
rithm) move into either state | or state 4. Of course there is no guarantee that if the process is
polled that it will not always be in states 2 or 3, just executing different system calls. To prevent
this from occurring a flag is set in the checkpointing entry sentry to force processes to halt betore
entering a system call if a snapshot is being taken. A process blocked in an entry is a variant of
state 4.

It a process is in a state where the system call it is in needs to be restarted in the recovery, the reg-
isters must be fixed so that this will occur. This means that the process program counter and stack

pointer must be copied and adjusted before they are saved.

Once a snapshot has been taken, individual checkpointing threads are spawned that write out the
memory checkpoint of each process. The hash table queues are written to files and asynchro-
nously flushed to speed their movement to disk. After all processes have been written to disk, the
checkpoint is committed by having the last thread first write the new checkpoint number to a com-
mitted checkpoint log and then perform a synchronous flush of all disk buffers. This insures that
the new checkpoint is on disk and that the disk checkpoint associated with the new checkpoint is
also stable. The checkpoint is now said to be committed. The last thread then deletes the old
checkpoint, journal, and disk checkpoint information. Performance of the application during this
commit period can be affected because of the additional CPU load caused by the threads perform-
ing the commit and the load on the disk caused by writing the checkpoint.

A high level pseudocode listing of the snapshot algorithm is shown in Figure 35. The first step of
the algorithm is to suspend all processes involved with the application. A loop is then entered
where each process is checked to see if it is in a safe state to checkpoint. If a process cannot be
checkpointed, it is unsuspended so that it can move into a safe state. After a each process has been
checked, the snapshot algorithm sleeps for a small time interval if there were any processes that
were not checkpointed. The sleep interval should be large enough so that on average, any pro-
cesses not in a checkpointable state will enter one within the time interval.

68

routine snapshot ()
begin /* snapshot */
suspend all processes in the application;
set flag indicating processes should stop in system cal
entries;

=

while (processes left not checkpointed)
begin /* while */
for (each process not checkpointed)
begin /* for */
curproc := next process not checkpointed;
/* state 1 */
if (curproc is executing in its own address space)
begin /* if */
checkpoint_process (curproc) ;
mark curproc as checkpointed;
end /* if */
else
begin /* else */
/* state 4 or call entry */
if (curproc is in system call entry or in a
semi-permanent sleep)
begin /* if */
copy curproc’s regs and
adjust so system
call will be restarted
in recovery;
checkpoint_process (curproc) ;
mark curproc as checkpointed;
end /* if */
else
begin /* else */
/* process not currently
checkpointable
(state 2 or 3) */
resume process;
end /* else */
end /* else */
end /* for */
if (all processes not checkpointed)
delay () ;
suspend processes that were resumed above;
end /* while */
resume all processes;
end /* snapshot */

Figure 35. Snapshot algorithm

3.5.6 Device Initialization

During application execution the state of external devices may be changed. An example is a video
display card which is set to a certain mode of operation. If no provision is made for these opera-

69

tions, then recovery to a checkpoint may result in the device being in a state that is inconsistent
with the application’s expectations. There are two ways to checkpoint a device’s state. The
method of choice is determined by the characteristics ot the device. If the application’s modifica-
tions of the device’s state are transparent to the operating system (as in the case of a memory
mapped video card). some mechanism must exist for reading the entire state of the device from
the operating system. To recover the device its entire state must be read trom the checkpoint and

then used for its reinitialization.

[t all state modifications are visible to the operating system through system calls, it may be advan-
tageous to log state modifying commands to a special device checkpoint log. When a device is
being recovered, state modifying commands must be replayed in succession, to move the device
to the correct state. Unlike other checkpoint files, the device checkpoint log is not deleted when a
new checkpoint is taken, but is copied to the new checkpoint and appended with any state modify-
ing commands that have occurred since the previous checkpoint. If the number of modifying com-
mands is expected to be high for a particular device resulting in a checkpoint log that is the same
order of magnitude in size as the device’s state, then the option of checkpointing the device’s state
in its entirety should be pursued if possible.

In the system implemented there are examples of both types of device. The video display card
contains part of the X application’s state - namely, the display image. X sets the device into a
graphics mode, initializes a palette of colors for display, and then draws the display image in the
display card’s memory. These state changes are all made through special assembly language
device instructions and through memory mapped I/O, and therefore are transparent to the operat-
ing system. Even if they were not transparent, the number of state modifications made when a
window is drawn on the screen, for example, makes logging impractical for this type of device.

The second type of device is exemplified by the mouse and the keyboard. In the Mach/UX archi-
tecture, the low level device driver’s are in the kernel and since the checkpointing policy has been
placed in the UX server, it does not have access to the state of the device drivers. During the
course of X initialization, 1octl1 (/O control) system calls are made to set the state of the mouse
and keyboard device drivers. The checkpointing policy journals these calls into a device log file so
that at the beginning of a recovery the device drivers can be initialized by replaying them.

3.5.7 Checkpoint Interval

Checkpointing implies a transactional saving of state to the stable medium. Because this is usually
an expensive operation, checkpoints must be spaced in time. The issues involved in determining
the checkpoint interval include the cost of checkpoint, limits on the size of the journal, and recov-

70

ery time limits. Each factor is influenced by both the implementation and by application require-
ments. The checkpoint control mechanism should be flexible allowing for the interval to be set at

run-time with some of the interval specification options being:

» Time interval based
e Journal size-limit based
e Application or user directed
»Event determined
Measurements of checkpoint overhead will provide user’s guidelines that can be followed to

achieve specific application needs.

3.5.8 Checkpoint Recovery

Recovery of a checkpoint is a fairly straight-forward process. First, the commit log is read to
ascertain the most recently committed checkpoint. A check is then made to see if an uncommitted
checkpoint exists, and, if so, it is deleted. An uncommitted checkpoint means that there is a sec-
ond journal and disk checkpoint that must be integrated with the journal and disk checkpoint of
the committed checkpoint. The committed and uncommitted disk checkpoint and journal files are
then spliced together. In the case of the journal, this means appending the second journal to the
first. For the disk checkpoint a process whereby the file identifiers of the second disk checkpoint
are changed to corresponding id’s of the first checkpoint or assigned new id’s must be pertormed.

Processes are created for each process in the checkpoint with their process control blocks, regis-
ters, and memory map restored from information in their individual checkpoint files. It is in this
part of the recovery that the fixup structure referred to earlier is created. Next, the memory maps
are filled with the checkpointed pages. External pager hash tables are recreated as this occurs.
Disk checkpoint recovery is then performed followed by the fixup routine that adjusts pointers.
Finally, all the processes are started. These steps are outlined in Figure 36.

3.6 Checkpointing Examples and Performance

This section presents measurements of overheads for the external pager, taking a snapshot, and
committing a checkpoint. Just as for disk checkpointing, it is necessary to measure instantaneous
overheads and profile real applications to obtain an overall view of the checkpointing pertor-
mance impacts. The first part of this section presents measurements based on a well defined syn-
thetic program. This is followed by examples of real checkpoint sessions taken on the same

applications that were used in the journaling measurements.

71

routine checkpoint_recover ()

begin /* checkpoint recover */

read the commit log to obtain the committed checkpoint
numer ;

if (an uncommitted checkpoint exists)
begin /* if */
delete the uncommitted checkpoint;
append the uncommitted journal to the commited journal;
integrate the uncommited disk checkpoint with

the commited disk checkpoint;

end /* if */

for (each process of the application)
begin /* for */
Ccreate a new process;
restore the process control block from the checkpoint;
restore the address space of the process;
end /* for */

disk_restore();

do any pointer and resource id fixups;

start all processes;

end /* checkpoint recover */

Figure 36. Checkpoint recovery algorithm

3.6.1 External Pager Overhead

Out of all the factors affecting the performance of an application that is using the checkpointing
and journaling policies, the use of the Mach external pager facility is the most detrimental. There
are two main reasons for this: the first is that the external pager adds a level of indirection in the
page allocation path and the second is that each page that is backed by the external pager is also
backed by the kernel pager. Request paths used when an application is backed by the kernel’s
default pager are shown in Figure 37(a). Requests generated when an external pager is used are
shown in Figure 37(b). When the application is running and takes a page fault on a new page (ini-
tializing data for example), the kernel sends a request for the new page to the external pager. The
external pager must itself allocate a page to provide. This generates a page fault in the kernel that
causes a request to be sent to the kernel’s default pager for the new page. The default pager sup-
plies the page to the external pager which, in turn, supplies the kernel with the page. When the
page is modified by the application, the kernel makes a copy of the page to dedicate to the applica-
tion. Therefore, two memory pages are dedicated to backing one application page. This results in
extra load on the physical memory system. The use of more pages means that more pages must be
swapped into and out of physical memory. Each pageout means a disk write as the page is written
to the paging file for temporary storage.

72

1. application requests page
2. pager supplies page

default pager

(a) page fault with kernel pager

1. application requests page

2. external pager requests page
3.default pager supplies page

4. external pager passes page

5. application copy faults on page
6. pager provides private copy

w. default pager
2

application

(b) page fault with external pager

Figure 37. Page fault paths

To measure this overhead a synthetic program was written that has a global data structure. The
program touches each page of the data structure once by writing a value to the first byte of each
page. The size of the data structure is varied by modifying the program and recompiling it. Time
per page access was measured by taking the total time and dividing by the number of pages

touched.

Results of running the program with the external pager and the default kernel pager (native) are
shown in Figure 38. The small values on the left side of both plots indicate that the amount of vir-
tual memory accessed by the program, the kernel and the external pager (if used) fits within the
physical memory allocated for swapping.In the plot of the external pager run a dramatic jump
occurs at 3 MB. This indicates that swapping has begun, resulting in pages being stored in the
disk paging file. Page access time then goes up because to touch new pages the kernel pager must
write pages to disk to make room for the new pages in physical memory. This effect is seen at
about 6 MB when the program is run with the kernel pager as its backing memory manager. The

73

jump is much higher in the external pager case because when the external pager is used there is
more than one page allocated for each page of program data that is touched.

0030 —————————————————

G—®O Native
¥—X External Pager

0.020

3

g

=

0.010 |

0.000 OS=R——=0 :

0.0 3.0 6.0 9.0 12.0
Memory Size (MB)

Figure 38. Time per page access for default and external pager

More information as to what is occurring in Figure 38 can be obtained by plotting the number of
page faults that occur in each experiment. The number of total page faults are plotted in Figure 39.
External pager runs generated 2-3 times the number of page faults as default pager runs. Figure 40
shows the number of pageins and pageouts generated. If this is compared with Figure 38, the
sharp rise in page access times correlates with the beginning of the pagein curves. Pageins are
synchronous events since the application cannot continue until the page data is available. Page-
outs work by a different mechanism since unmodified pages that are paged-out do not need to be
written to disk.

It is clear that the use of an external pager the memory requirements of an application by two to
three times, with adverse effects on application performance. The additional memory demands
could be eliminated if the kernel default pager were instrumented with sentry points.This would
allow for the checkpointing policy to work directly with data structures and pages that are backing
the application. To avoid delays that would have been involved in modifying the Mach kemel,
this feature was not incorporated in this initial work, but it can be readily added in future versions.

74

8000 g " T T i T - y T
G—O Native
*¥—% External Pager
6000
£ 4000 F
%
g
2000
O & i L i A 1 " i 1 " A
0.0 30 6.0 9.0 12.0

Memory Size (MB)

Figure 39. Page faults generated by memory touch

3.6.2 Snapshot Performance

The most visible part of a checkpoint to a user is the snapshot. During a snapshot the application
is essentially suspended so the snapshot’s duration is an important factor. A smaller snapshot
would in most cases allow for more frequent checkpointing. To measure the performance of snap-
shots in a controlled environment, the synthetic program used in the external pager profiles was
used again. The program’s global data size was again varied and each page was touched. Check-
points were then taken and the snapshot intervals measured. Measurement results are plotted in

Figure 41.

The duration of each snapshot increases at roughly a constant factor as the amount of memory
used increases. Recall that all that is done during this phase is that the snapshot algorithm is writ-
ing the process control block of the program and its registers to a file while requesting that the
kernel flush all of the application’s modified pages. When the kernel notifies the snapshot algo-
rithm that a page has been flushed it does not need to immediately provide the page. It simply
marks the page as flushed so that if the application modifies the page again it will have to request
it from the external pager. The page is provided to the checkpoint algorithm when it touches the
page to save it to the checkpoint file. When there is only one process being checkpointed, this

75

5000 T T T T r v

4000
*»—X Native Pageins
*—¥ Native Pageouts
I O— External Pager Pageins
__2 3000 F G—o0 External Pager Pageouts
[:E
_g: A
€ 2000
Z !

1000

0.0 3.0 6.0 9.0 12.0
Memory Size (MB)

Figure 40. Pageins and pageouts for memory touch

occurs during the commit phase of the checkpoint. If the kernel provided the page when the flush
request was made, in many cases it would have to pagein the page from the disk paging file sub-
stantially increasing the snapshot duration.

3.6.3 Commit Performance

The time period between completion of a snapshot and a checkpoint is committed is the commit
delay. During this time the application is resumed from its suspended state, but it may experience
performance degradation due to the load of checkpoint commit routines on the processor and the
disk. During this period, the kernel is flushing pages to the external pager, and the checkpointing
threads are writing the pages out to disk. To measure the commit delay for various sizes of check-
point, the synthetic program was again used. Two curves are graphed in Figure 42, one for com-
pressed checkpointing, and one for an uncompressed checkpointing. Run-length compression
usually is able to significantly reduce the space taken by memory pages. It is therefore used in the
implementation to compress both checkpointed pages as well as video data. In addition to saving
disk space, compression can improve performance because fewer disk blocks need to be written
and flushed to disk. The compressed curve is a lower limit on the commit duration because only

76

50 ——————

10F

Snapshot Time (s)

0.0 3.0 6.0 9.0 12.0

Memory Size (MB)
Figure 41. Snapshot duration for synthetic program

one byte of each page is nonzero (the byte that is modified). This is the optimal situation for the
compression algorithm and results in the smallest checkpoint size and therefore the lower bound
on commit delay. The uncompressed plot represents a checkpoint where every byte on the check-
pointed pages differs from its neighbor so that no run-length compression is possible. It therefore
represents the upper bound on checkpoint size and performance. As in the memory touch experi-
ments, increases in paging activity starts to create disk accesses causing the kinks on the left side
of the graph.

For 12 megabytes of data, one can expect a commit time of 2 to 2 and 1/2 minutes. Recall that the
application is allowed to run during this time. The effect of performance degradation during this
interval can decrease system responsiveness, a factor that needs to be considered in selecting the

checkpoint interval.

3.6.4 Recovery Time

Although most people would consider recovery time of secondary importance if the alternative
was the loss of critical data, it is desirable to minimize it. Figure 43 shows the time taken to
recover the synthetic program. Recovery here refers to the time that it takes to recreate a process

77

200.0 —— —

*—X Compressed
¥—* Uncompressed

T
i

150.0

T

100.0

Commit Time (s)

500

OO o A " L " " l i i
0.0 3.0 6.0 9.0 12.0

Memory Size (MB)

Figure 42. Checkpoint commit delay

from a checkpoint. Comparison of Figure 42 and Figure 43 shows that recovery time for a given
data size are about one third commit time for the same amount of memory. Much of this is due to
the fact that the checkpoints are read instead of written and disk read operations are faster than
write operations. Also, since there is no memory copying or flushing in the recovery, there are
tewer page faults. Once again, the sharp rise coincides with disk paging activity.

3.6.5 Examples of Checkpointing

The dilemma facing checkpoint measurement is the same that confronted journaling measure-
ment: there are no standard benchmarks. Synthetic programs like the memory toucher have very
little relevance when the question is asked, “how long will a checkpoint of this application take?”
Results in the synthetic case can only be used to make crude approximations of the performance
of real applications. Even when a real application is used in measurements, the correlation
between the circumstances that existed at the time of the checkpoint (state of the paging file,
buffer cache, etc.) can be significantly different than for the same application just a few seconds
later. Still, measurements must be taken and presented if only to provide an order-of-magnitude
reference.

78

00— ——————
350 F 3

300 F

o

N

o
T

Recovery Time (s)

150 F

100 F

0.0 [R L R .) . A] N R
0.0 3.0 6.0 9.0 12.0

Memory Size (MB)
Figure 43. Recovery time

A few programs were selected as representative of the most popular generally available programs
used in the X system. Bitmap is the drawing program shown in Figure 29. With it, a bitmap can
be drawn or edited, and saved or read from a file. A variety of drawing functions are presented as
buttons along the left side of the window. The gnu-emacs editor is perhaps the most popular X/
UNIX text editor and is commonly used in program development (like the development of Mach
and the sentry policies). It has powerful facilities that allow one to view and edit multiple files
simultaneously. Xterm gives terminal programs like shell and cshell (csh) an interface to the X-
window system. With its use the user can have several shell programs running concurrently and
moving between them is as easy as moving the mouse cursor from one xterm to another. X-
standard is the name given to X and its batch of standard startup clients. In these experiments,
as in the journaling runs, an xterm, window manager (twm), and a clock (xclock) are all part
of the environment. Finally, X-large is a more typical working environment. It includes all that
%-standard does, plus 3 additional x-terms and a gnu-emacs editor with a file loaded.

The first set of measurements in Table 5 show checkpoint performarice immediately after the pro-
grams have finished their startup sequences. For bitmap this means that a bi tmap editor window
has been drawn on the screen and is ready for input. The same applies to gnu-emacs and
xterm/csh. X-standard initialization is complete when the xclock and xterm windows

79

are drawn and the shell (csh) in the xterm is ready to accept input. X-large is checkpointed
after all 4 xterms have been created and the gnu-emacs editor has finished its initialization
after loading a file.

program pages page snapshot | commit ckpt % of
Application || size(byte) | ckpted faults delay(s) | delay(s) | size(b) | no cmprsn
bitmap 559K 73 179 1.6 1.9 137K 47
xterm+csh 813K 103 177 1.8 22 155K 38
gnu-emacs 1466K 58 159 19 21 149K 64
X-standard 1095K 441 1422 8.3 8.5 591K 33
(video card) 29K 3
X-large 9881K 826 1661 207 84 1236K 37
(video card) 60K 6

Table S. First checkpoint performance

A variety of different metrics are shown for each program with all sizes in bytes and all times in
seconds. Program size indicates the size of the object file, or files, and can be an indicator of the
complexity ot the program. Checkpoint size is the size of the memory checkpoint, which is com-
pressed. The final column shows the amount of compression that was possible by comparing it to
the projected uncompressed size. The video card is checkpointed when X is checkpointed.

If no data compression were applied to the video data, its checkpoint would be 1 MB in size. For-
tunately, video, especially an X desktop image, tends to high compression ratios when a run-
length algorithm is applied. In this case the video checkpoint is 3-6% of the original size. The
table shows that even for very large applications (X-large) the snapshot is only 20 seconds in
duration. A delay such as this is usually tolerable in an interactive environment about once every
30 minutes. The total checkpoint sizes are less than 2 MB in size. If this is combined with 30 min-
utes of journal, which is about 3 MB and an additional checkpoint (before a new checkpoint is
committed both the old and the new checkpoint exist on disk) the disk space requirements of a
such a system are about 10 MB.

To see the effects of data compression on checkpoint duration, measurements were taken for
checkpoints of the X-standard and X-large applications without data compression. Mea-
surements obtained are shown in Table 6. Times are shown for snapshot delays, and commit
delays, with the sum of those delays shown in the checkpoint duration column. Total durations are
reduced by about 30% in both cases when data compression is used. This savings is due to the fact
that fewer disk blocks must be written when the data is compressed to take less space. Also of

80

interest in the table is the fact that the commit delay is much less than the snapshot delay tor X-
large when no compression is used. When a snapshot is taken of a process, a thread is immedi-
ately spawned to being committing that process to disk. This means that in multi-process applica-
tions. the commit of one process may overlap the snapshot ot another process. In this case, most
of the processes had finished committing their checkpoints before the final processes had finished

their snapshots.

snapshot delay (s) commit delay (s) checkpoint duration (s)
Application
cmprss none cmprss none cmprss none
X-standard 8.3 14.6 8.5 10.5 16.8 25.1
X-large 207 353 84 8.5 29.1 438

Table 6. Checkpoint duration with and without compression

Checkpointing an application after it has finished its startup indicates how much data is modified
during initialization. Measurements for a second checkpoint are shown in Table 7. The check-
points were taken after the programs were exercised in their respective ways. Xterms commands
were entered, a drawing was entered with Bitmap and text was edited with gnu-emacs. The
table shows that the amount of data saved in a second checkpoint can be significantly smaller than
in a first checkpoint. As expected, snapshot durations are also smaller.

pages page snapshot | commit ckpt % of
Application ckpted faults | delay (s) | delay(s) | written(b) | no cmprsn
—_— — o
bitmap 53 93 14 1.6 91K 42
xterm+csh 102 159 1.3 22 149K 36
gnu-emacs 63 132 14 2.1 164K 65
X-standard 266 1154 5.7 6.0 436K 41
(video card) 35K 3
X-large 356 1238 11.2 3.7 595K 42
(video card) 65K 6

Table 7. Second checkpoint performance

81

The final measurement of recovery time is shown in Table 8. Only X-standard and X-large

Application Recovery Time (s)
X-standard 32
X-large 16.9

Table 8. Checkpoint recovery

are shown because the other programs are not true applications. If considered individually, a pro-
gram like xterm violates the system model because it communicates with processes that are not
descendents of its root process. X must therefore be the root process for any X based program.

Recovery times are comparable to snapshot durations, and are relatively low considering the com-
plexity of a full recovery of the scale of X-large, for example. Low recovery times such as
these indicate that user’s should expect checkpoint recovery to be under one minute in duration.
Using the example parameter of a 30 minute checkpoint period, a user could expect a total aver-
age recovery time of about 5-10 minutes. This is based on 50% journal recovery compression for
an average of 15 minutes elapsed time since the last checkpoint. As the duration of the application
session increases this number results in increasing savings in both time and effort of reproducing
a lost session. Even if little data is lost, the low recovery latency makes checkpoint recovery prac-

tical.

3.7 Summary

This chapter has presented the design and implementation of practical and efficient single com-
puter tault tolerance through the use of journaling and checkpointing. The techniques used and
demonstrated the versatility of the sentry mechanism presented in Chapter 2.

A wide range of challenging issues were addressed during the development of these policies lead-
ing to the development of new algorithms that, working together, support the recovery of concur-
rent, communicating processes running on a single node. Contributions of special significance
related to the journaling policy are the journal replay, signal replay and disk checkpointing algo-
rithms. The journaling techniques make possible the recovery through replay of today’s worksta-
tion benchmark of application size and complexity, the X-window system and its clients. Signal
replay presents a novel approach to handling the recovery of signals in the UNIX 4.3 BSD envi-

ronment.

82

The disk checkpointing algorithm ts a new contribution to recovering persistent storage. an issue
usually ignored in previous recovery work. Because the disk checkpointing algorithm is based on
the file as the unit of recovery, rather than the logical disk block as in previous algorithms. the
new algorithm requires no modification of the file system and is easily integrated into the sentry
tramework. The combination of these algorithms provide for less than 10% overhead in fault free
execution for the majority of typical workstation software with at most one keyboard or two
mouse inputs being lost in a failure. Recovery usually provides replay compression of between 5
and 15 meaning that time, if not data, is saved in the case of a tailure. Journal data generation rate
is on the order of less than 100 KB per minute indicating that a 10 MB disk partition, considered

small by today’s standards, is normally enough to store one hour of application behavior.

The checkpointing policy led to the design of a snapshot algorithm for concurrent processes that
are making system calls. This is new in that existing algorithms do not address the challenge of
checkpointing processes that may be blocked in the operating system or performing device
accesses. An organization strategy is also presented that solves the problem of file explosion in a
disk based checkpoint system. Measured snapshot durations of on the order of less than one
minute for memory intensive applications and checkpoint sizes of less than 2 MB represent excit-
ing results that prove that a hard disk is a suitable alternative to other forms of stable storage. I
checkpointing is performed every 30 minutes, less than 10 MB of disk storage in total is needed
for both journaling and checkpointing, and recovery latency will be on average less than 5 min-
utes (on average a crash will result in 15 minutes of journal - 30/2 - which is replayed in 5 min-

utes).

The next chapter describes research into computing environments consisting of multiple comput-
ers. These environments have been divided into the two areas of mirrored systems and distributed
systems. Issues related to fault tolerance are discussed with respect to the areas and a number of
new algorithms are developed that are projected to have very low average overheads. Sections
that follow discuss the integration of these algorithms with the sentry mechanism.

83

Chapter 4

Multiple Computer Fault Tolerance

4.1 Introduction

The algorithms introduced in Chapter 3 provide fault tolerance for single computer, concurrent
applications. While a large class of applications fit this model, there are an increasing number of
applications that cannot tolerate the outage caused by the recovery procedure of rebooting and
restarting or that consist of distributed computation. There is also an increasing trend toward
distributed computing, where processes on physically separate computers cooperate through
message passing. Additional computers are necessary to effectively deal with these additional
requirements, and this chapter focuses on sentry based software solutions that use multiple com-

puters to address them.

There are two ways that multiple computers can be used to provide fault tolerance: either
through mirrored redundancy or distributed redundancy. In mirrored redundancy, multiple com-
puters are made to work in lock step with one another either through hardware or software tech-
niques. The computers use voting and other fault detection techniques to determine if a failure
has occurred and mask it from the outside world. An image of one highly available computer is
presented to the rest of the system. All major vendors of fault tolerant computers use some form
of hardware redundancy and lockstep to provide a view of a continuously available computer
[33]. Levels of high availability are necessary in computers that act as file or compute servers
for a network of client computers or that are being used in critical computation such as an on-

84

line reservation system or a transaction data base. A software approach to mirrored systems. how-
ever. has many potential advantages over the existing hardware approaches including lower cost.
the ability to use current hardware. low maintenance. and ease of installation. This is the area
explored in the first part of this chapter. Design of a high performance mirrored system that is
based on the proven technology of Chapter 3 is presented. The solutions are based on synchroniz-
ing computers at the highest possible level while maintaining the guarantees of availability that

are made by much more costly hardware techniques.

Multiple computers are used for distributed redundancy in the myriad ot distributed recovery
algorithms that have developed over the past decade. A distributed computation is an application
that has processes physically distributed among a set of networked computers. Fault tolerance is
achieved with checkpointing and journaling, but different variations on this theme have different
levels of fault tolerance, performance, types ot overhead, and underlying assumptions. Initially
this work began as an investigation into the suitability of the sentry mechanism as the framework
for these algorithms, but in the end a new type of distributed recovery algorithm was introduced
that, like the mirrored system technology, is based on the tested ideas of Chapter 3. Specifically,
the new distributed journaling algorithm only saves information about message ordering, rather
than message content. This contribution is a direct extension of the sequenced journaling used in
the single computer fault tolerant algorithms. In addition, a new type of loosely synchronized
checkpointing is introduced to work with the journaling algorithm. Together, these algorithms can
provide increased performance with reduced complexity over existing algorithms.

Neither of these new ideas has been implemented to date, however, the fact that they are based on
the single computer technology makes their designs credible.

4.2 Mirrored Systems

This section presents algorithms for two and three node mirrored computer systems. The first part
of the section describes characteristics of a software based mirrored system (SBMS) and briefly
mentions the issues involved in an implementation. This is followed by an examination of each
implementation issue in depth and the section is concluded with a comparison of SBMSs to exist-
ing fault tolerant systems. In this section the words computer, node, and processor will be used
interchangeably to refer to a complete computer system including a CPU, main storage, and sec-

ondary storage.

4.2.1 System Description

The goals of a SBMS are to provide the following over a single node workstation:

85

e permanent failure fault tolerance
ecnhanced fault detection
scontinuous availability

The single computer techniques of Chapter 3 can only tolerate transient hardware and software
faults and certain permanent failures. A two processor SBMS is able to tolerate one permanent
fault and a three processor configuration can tolerate up to two concurrent permanent taults. In
addition, the nodes in a multi-computer configuration can use each other as reference points to
pertorm fault detection. Finally, a node that has failed can be replaced with a new node with min-
imal disruption to system service.

An SBMS system would consist of the following (parenthesis are used for the three node system)
components:

2 (3) off-the-shelf PCs or workstations

«Floppy disks containing an SBMS initialization system
¢4 (6) ethemnet boards

*2 (3) ethernet cable

2 (3) terminals for monitoring and system control

An architectural picture of a two node system is shown in Figure 45 and Figure 45 shows a two
processor configuration. The computers are connected to a network via ethernet, and there is also
an ethernet cable serving as a direct link between the nodes. For all intents and purposes the net-
work the system resides on would see one computer instead of two. The exact method whereby
the two nodes would receive the same input is an implementation detail dependent on the net-
work. One possibility is to assign the same network addresses to the two nodes. Another alterna-
tive is to have one node pass the input to the other node. To reduce network load, one of the
mirrored computers would consider itself the output node.

4.2.2 Issues

There are three issues which must be addressed in mirrored system fault tolerance:

I. synchronization
2. fault detection

3. integration

86

Node | Node 2
i
Application Application Application Application
Process Process Process Process
' Recovery Manager 3 - Recavery Manager
synch manager Jdetection manager feee]™ > nager fdetection manag

Local Area Network

terminal

Figure 44. Architecture of two processor mirrored system

Dedicated
Ethernet

)

X terminal

Figure 45. Two processor mirrored system
During normal execution each machine must be kept synchronized with the other machines in the
system. This synchronization ensures that the machines are essentially clones of one another and
that they are performing the same operations at approximately the same time. If the system 18
properly synchronized it will not be biased to any particular machine remaining fault-free.

87

In order that recovery can take place. faults in the system must be detected and handled. The
native machine fault detection mechanisms will catch the majority of faults, but the fact that the
machines are synchronized provides opportunities for enhanced detection mechanisms. If the
machines diverge (lose synchronization), a fault has occurred. A further level of detection com-

pares outputs and system call results across machines for agreement.

Finally, when a node fails and a new node is brought in for integration into the system it is neces-
sary to:

emake the new node an exact replica of the existing nodes

eminimize performance degradation of the functioning nodes

eminimize integration latency

4,2.3 Baseline Node

The nodes that will be considered here tor analysis are ones that are representative of typical

workstations over the next 2-3 years. Their specifications are:
30 MIPS processor
+32 MB main memory
« | GByte hard disk with 17Mb/s (~2MB/s) write bandwidth
* |0Mb/s (~1MB/s) bandwidth interconnection (e.g. Ethernet)

4.2.4 Mirrored System Implementation

4.2.4.1 Synchronization Algorithms

During the implementation of the single computer algorithms it was realized that to ensure the
same execution by two different processors (or the same processor during a recovery) as viewed
from outside the node, it is sufficient to ensure that corresponding applications on two nodes have
the same results for all system calls that they perform. For the majority of system calls executing
on two nodes this will happen automatically. For example, an application executing on node A
first makes an open system call for a file. The corresponding application on node B will make the
same call and if the logical disk layouts of both nodes are identical both calls will have the same

result.

There are two classes ot calls which require special attention. The first type of calls are interpro-
cess system calls. The majority of these calls are interprocess communication (IPC) related, but

88

include other types such as signals. tile system calls. and status related calls. When a process per-
forms a call which is atfected by, or atfects another processes’ execution the results depend not
only on the execution of the process making the call. but also on the time the call was made with
respect to the target(s) processes. In Figure 46 for example, it a kill signal is sent at time A pro-
cess | will never make the call at time B. If the signal is sent at time C the call at B will have been
made. The call, can in turn, attect the execution ot other processes and as an end result aftect the
behavior of the node as viewed from outside the node. Similarly, tor IPC calls, the results will
depend on the order of the call with respect to other calls which can aftect their outcomes.

time

Figure 46. If process is killed at time A, call will not take place

If it were possible to synchronize the schedulers on the nodes via common interrupt and clocking
signals this class would be automatically synchronized. However, that approach requires com-
plex, platform specific hardware [4][16][33]. The SBMS approach is to synchronize at the event
level in software. By introducing a minimal number of execution synchronization points (ESPs)
into the operating system it can be guaranteed that interprocess calls will have then same results

across an SBMS system.

The synchronization mechanism works on the principle that the process identifier of a process
running on one node will match the process identifier of its corresponding process(es) on the other
node(s). This will hold true as long as the processors remain synchronized because the process
creation calls will always occur in the same order on all machines giving corresponding processes
the same identifiers. Each node maintains a pending synchronization list (PSL) which is merely a
list of process identifiers. When the operating system arrives at an ESP during execution of a call
requested by a process it checks the PSL for the requester’s identifier (note: from here on a pro-
cess executing in the operating system on behalf of a user level process and the user level process

89

will be considered the same process with the user level identifier serving as its process identifier).
It it does not find the id in the PSL it sends the identifier to the other node(s) and then sleeps.
Other processes on the node which are runnable can continue to execute and may in fact perform
synchronization themselves. This first scenario arises whenever a process is not the last of its cor-
responding processes on the nodes to arrive at an ESP. The last process in a group of correspond-
ing processes to arrive at an ESP will find its identifier in the PSL. It will then send the identifier
to the other nodes to wake the sleeping process(es) up and continue without sleeping.

Node A Node B

pid

time

pid

B Exccution Synchronization Point
PN sleeping

Figure 47. Example of execution synchronization point

Figure 47 shows an example. On the left side a process is executing on Node A. On the right the
corresponding process is executing on Node B. The process on Node A arrives at an ESP first.
Not finding its process id in the PSL it sends it to Node B and then sleeps. Node B receives the
identifier and not finding the owning process asleep will store it into the PSL. Sometime later
Node B arrives at the synchronization point. The process will find its identifier in the PSL so it
sends it to Node A and continues. When Node A receives the identifier it will wake up the process

owning it.

The second class of special system calls are temporal calls. These calls include ones which get the
time of day and statistics on processor utilization of a process. Calls like this are dependent on
hardware such as the system clock and the scheduling interrupt. Without very low level hardware
synchronization these types of calls will return different results on different executions of the

90

same application. To make these calls identical on ditferent machines. a second type of synchroni-
zation point is introduced called a data svnchronization point (DSP)

Each node maintains a pending data list (PDL). When a node arrives at a DSP it checks the PDL.
[t 1t finds its process identifier in the PDL it extracts any return data associated with the identifier
and uses that data as the result of the system call. Essentially, the use of DSPs cause any temporal
system call results to reflect the result of the first call.

Node A Node B

time pid

time value

I Data Synchronization Point
(e.g. gettime)
1 sleeping

executing gettime call

Figure 48. Example of data synchronization point

In Figure 48 there is again a two node SBMS system. Node A makes a gettime call. When it
arrives at the DSP in the call it checks the node’s PDL. Not finding its process identifier on the list
it will send the process identifier to Node B and execute the call. Upon finishing the call it sends
the time value it received to Node B which stores it in its PDL with the process identifier. When
Node B executes the gettime call it will find its identifier in the PDL, but must wait for data from
Node A. Once the data arrives it uses it as the time value for the call and then it will clear the data
and identifier off the PDL and skip the actual call. To prevent time from potentially appearing to
flow backward the node also sets the current time it uses to the system call result. It is possible for
two nodes to essentially simultaneously reach a data synchronization point and for messages to
cross each other in transit. To handle this case, processors are assigned a seniority number so that
all nodes defer to the senior-most node as having been the node to reach the point first.

91

Synchronization of access to shared memory, which is supported by relatively new operating sys-
tems such as Solaris (Sun Computer), UNIX System V [3], and Windows NT [10], necessitates a
ditterent approach trom system call synchronization. Shared memory access is not visible to the
operating system. This, of course, is the reason it provides an efficient communications medium.
[n order to keep accesses on two machines synchronized it 18 necessary to use the operating sys-
tem to intervene. All shared memory pages must be read and write protected tor each process so
that a fault occurs when a process attempts to access a shared page. The operating system is then
aware of the attempted access and can synchronize with the other nodes in the system. Once a
process has been granted access to the page, its access must be made atomic. This synchronization
degrades the performance of intense shared memory applications, but it offers binary compatibil-
ity with no special hardware.

4.2.4.2 Synchronization Performance

In the single computer algorithms points similar to ESPs were placed in the UNIX operating sys-
tem so that a concurrent application’s behavior during rollback recovery would be identical to that
of its initial execution. Experiments running applications which perform intense interprocess
activity such as X and its client programs have shown peaks of about 10,000 of these points
crossed in a one minute period with 300 temporal calls executed in the same period. Each ESP in
SBMS requires a process identifier to be transmitted to other nodes. A process identifier in UNIX
is two bytes in size. Temporal calls recorded in experiments require an additional four data bytes
and to be conservative, a rate of 1000 temporal calls per minute will be used in calculations.

Using the above rates a two processor system would require:

SP t P byt byt L minut byt
2 % 10000—20_ 5 228 11000 D5F o 62— 4000 S Lminue yies
minute ESP minute DSP minute ~ g0seconds second

At 770 bytes/second the Ethernet bandwidth of IMB/s is far less than 1% utilized. For maximum
performance the ethernet connection requires low level drivers which implement a very basic pro-
tocol specialized for SBMS communication needs. If each synchronization point results in, as an
upper limit, 1000 instructions to service, the additional load on a processor would be 20 million
instructions per minute (the node would cross about 10000 points and have to service 10000 mes-
sages from its partner). The 1000 instruction count includes not only the actual number of instruc-

92

tions executed. but any overhead caused by blocking due to lack of tight coupling ot the nodes.
Given a 30 MIPS machine the degradation is about 1% for each node.

A three processor implementation would require:

ESP bytes DSP bytes tes i tes
3 X 10000 b % 22X 4000 22F o gDV o YISy Lminute g Dyees
minute ESP minute DSP minute g0seconds second

This is still far less than 1% of Ethernet bandwidth. The performance degradation of each node
would be doubled to less than 2%.

4.2.4.3 Fault Detection Algorithms
In SBMS there are three types of fault detection which can take place:

enative processor and operating system fault detection
«fault detection through synchronization
secnhanced synchronization detection and inter-node data comparison

Coverage and effectiveness of native processor and operating system detection capabilities will
not be addressed here, but it will be assumed that those mechanisms detect the vast majority of
faults. A system fault detected by one of these mechanisms would cause notification of other

nodes and a shutdown to occur.

The last two bullets are optional ways to increase fault detection coverage of nodes at varying
costs. The basic synchronization algorithm presented earlier can be augmented to include a time-
out mechanism. An upperbound would be placed on differences in how long it takes a node to
reach a synchronization point after another node has already reached it. When a node is the first to
reach an ESP or DSP it sleeps as before. If a time-out interval expires before the process is awo-
ken by another node, the node would assume that the other node is no longer functioning or that
its behavior is different from its own (it has become unsynchronized). In either case a fault has
been detected. In a two processor configuration the fault is ambiguous and if the other node is still
running it will also detect a difference in execution of the two nodes. In this situation not enough
is known to determine why the behavior diverged. There are several things which can be done at

this point:

93

e Arbitrarily shut down one processor for reintegration

«invoke increasingly more comprehensive test suites to self-test each node until the fault

is detected
“elet the system user decide which machine will be declared faulty

In the three node configuration, the faulty node will be the node that doesn’t reach the synchroni-
zation points that the others do.

The synchronization can be augmented turther with synchronization identifiers. In the above algo-
rithms there is no check to make sure that when a process arrives at a synchronization point that
its corresponding process on other nodes has arrived at the same synchronization point - only that
it has arrived at some synchronization point. Of course, in a correct implementation the only time
that this will not be true is in the presence of a fault. To make sure that all nodes have arrived at
the same synchronization point each point is given a unique identifier which is transmitted with
the process id. If a process arrives at a different synchronization point than its corresponding pro-
cesses then a fault has been detected. This extra information will be one byte in size (there should
be less than 256 synchronization points - the single computer implementation of Chapter 3 has
about 15) increasing bandwidth usage by 1.6KB/s.

Comparison of system call results across different nodes allows for a further degree of fault detec-
tion. This fault detection mechanism would use fault detection points (FDP) at system call exits
that would act like DSP except that data comparison would occur. Different levels of this mecha-
nism could be invoked depending on system requirements. The first level would do a checksum
comparison of selected outputs calls such as a write to the console or network. Higher levels
would compare entire output streams and other system call results as well.

4.2.4.4 Integration Algorithms

Once a fault has been detected by the SBMS system, the faulty node must be replaced. In a two
processor system the time between the fault and the point at which the new node is fully inte-
grated is a window of vulnerability where the fault-free node is a single point of failure. A main
goal of integration is to close this window as much as possible. As mentioned in the first section
other goals are to have the replacement be an identical copy of the other nodes once integration is
complete and to minimally disrupt the availability of the fault-free nodes.

There are three system components a new node must copy from a fault-free node:

»CPU state (processor flags, program counter, etc.)

94

*Main memory contents
 Secondary storage contents

The components are all brought up to the state of the functioning machines concurrently so they

will be discussed with respect to the rolls they play in integration, rather than separately.

[ntegration of a new node would begin first with an initialization. The new machine is booted with
the SBMS floppies. This process would load the memory resident parts of the operating system,
and begin initialization of the hard disk. A considerable amount of space on a typical system is
taken up by system files and executables. The SBMS disks would contain copies of the disk’s ini-
tial system setup and also be brought up to date by the user to reflect new programs and directo-
ries that had been installed on the system. Thus, the initialization of a replacement node can be
done before a running node has failed, cutting down on integration latency. In addition, this hard
disk initialization will in many cases account for a sizeable percentage of the used portion of the

disk on the running nodes.

Because there will be a portion of the disk that has not been made to reflect the state of those of
the functioning nodes, all disk blocks that are unused in the initialization setup are marked spe-
cially as copy from buddy (CFB) on the integrating node and as copy to buddy (CTB) on the
buddy node. All disk blocks belonging to directories which can be modified by running applica-
tions are also marked this way. This will be discussed in detail later.

After system integration has begun, as directed by the user, the new node and the buddy node will
both move to integration code which has been mapped and wired (meaning that it cannot be
moved to secondary storage) to the same physical memory location. The buddy node will then
transfer over the connection all pages which are marked as wired. Note that these wired pages will
also contain the operating system stack. The buddy must also mark all non-transterred memory
pages as wait for integration (WFI) which will be discussed next.

The integrating node and the buddy node will then have the same state except that the majority of
the integrating node’s physical memory, and non-updated disk blocks have to be obtained when
needed from the buddy. Figure 49 shows the state of an integrating node and buddy node upon

completion of the initial integration procedure.

Once this initial state has been reached, both nodes continue with a return-from-subroutine
instruction which will pop a context off of the stack and continue the operation that was in
progress before integration started. Following initial integration the integrating node may try to
access memory pages or disk blocks which are marked CFB. It will jump to the integrating code
which requests these pages or blocks from the buddy. It is important to note that the buddy node

95

Integrating
Node

Memory

Disk

Buddy
Node

Memory

—1 Integration Code Pages

224 “Copy From Buddy” Memory Pages
AN\ “Copy From Buddy” Disk Blocks

Wired Memory Pages

“Wait For Integration” Memory

DN “Copy To Buddy” Disk Blocks
B 1nitial System Disk Blocks

Figure 49. Integrating node and buddy node after initial integration

cannot modify any of its WFI pages before they have been transterred to the integrating node.
This prevents the integrating node from receiving dirty pages. Theretore, when the buddy tries to
modify a WFI marked page it will page fault into the integrating code where it will pause until it
has transferred the page to the integrating node. Any pages or disk blocks which have been trans-

ferred are cleared of their special designation and treated as in normal operation.

This algorithm will eventually lead to a completion of integration where the states of the buddy
and integrating nodes are identical. However, because it is necessary to reduce integration latency
as much as possible, an auxiliary transfer method must be in effect. As a low priority task the inte-
grating code on the buddy will start at one end of memory and proceed to transfer any memory
pages marked WFI to the integrating node. Once this is completed, it will start at one end of the
disk and proceed to transfer all disk blocks marked CTB to the buddy. This process guarantees

that within a short period of time the two nodes will converge.

96

Transter of data from one machine to another will result in moderately degraded performance
until integration 1s completed. For this reason all time-outs used for fault detection must either be

relaxed or turned off for this period of time.

A note should be made here about copying disk images. In the past, maps of bad disk blocks were
maintained by the operating system. [f this was the case now, the disk integration routines would
not work it two disks had different bad block layouts (which is likely). Modern disk drives are
logical block addressed and the disk driver controller maps the logical block to a functional phys-
ical block. This means that the disk is logically copied and the logical block numbers are identical

for the original and the copy.

4.2.4.5 Integration Performance

A large part of the integration actually takes place before the new machine is even connected to
the functioning SBMS system. This involves booting off the SBMS system disks which performs
hard disk initialization, prepares the node for integration and signals a buddy that it desires to

become part of the existing SBMS system.

Once integration has started all wired memory pages must be transferred from the buddy to the
integrating node. During this transfer period, the SBMS system appears dead. Even in a three
node system, the node not participating in the integration remains paused during the initial inte-
gration. Pages that are wired include operating system code, data and stack. UNIX systems stud-
ied have between 2 and 4 MBs of wired memory. The transfer of this memory from the buddy is
constrained to IMB/s by the Ethernet resulting in a one second pause for every | MB of memory
transferred. The rest of the memory is copied on demand or by the background copying mecha-
nism which would use run-length data compression to increase the perceived bandwidth. An
upper lower bound on the total time to copy memory is obtained by assuming that the copy is the
only load on the system. In this case between 28 and 30 seconds is necessary. The actual time
required would be determined by the actual system load, but a time limit would be placed on the
duration causing a rise in the priority of the integration code for every fixed interval (e.g. five sec-

onds) over thirty seconds. A reasonable cap would be one minute.

The disk integration would be handled in an identical manner, and would start after memory inte-
gration was completed. Current UNIX systems in use at CMU use about 150 MBs of disk storage
for system files and executables which include the X window system. This will be the number
used in calculations here. Because the disk is 1GB in size and initialization formats about 150MB,
roughly 850MB must be copied from the buddy either through demand-request, or by the back-
ground integration code. Again, data compression will, in many cases, dramatically reduce the

97

integration time. To obtain an upper lower bound on the time required to complete disk integra-
tion, it is assumed that the integration code is the only active task on the node for the duration of
integration and that there is no data compression. If this is true then the transfer rate is again lim-
ited by the Ethernet bandwidth to IMB/s as in the memory transfer case.

I second I minute
850MB X X = 14.2minut
IMB 60seconds futes

Thus, at a full rate of transfer, approximately fifteen minutes is required. The actual time required
will vary depending on the system load. Of course, it is felt that for every fixed time interval that
expires above fifteen minutes (e.g. every five minutes) the integrating code should be given higher
and higher priorities to keep integration time to less than some cutoff such as thirty minutes.

In summary, system integration begins with a two to four second pause in service followed by a
fifteen to thirty minute reduced pertormance period. '

4.2.5 Comparison to Existing Fault Tolerant Systems

So as not to compare apples to oranges a comparison will be done of two processor systems to a
dual SBMS (2SBMS) system and three processor systems will be compared to a triple SBMS
(3SBMS) system. In the tables presented, items not included are either roughly equivalent on the
compared systems or there is not enough information available to make a comparison.

4.2.5.1 Dual Mirrored Systems and Tolerance

A new entry into fault tolerance is Tolerance computer with their recent introduction of their two
processor system. The Tolerance machine shares many characteristics with SBMS such as off-the-
shelf nodes, but SBMS has several advantages. Table 9 gives a comparison of some of the key
characteristics. SBMS is superior to Tolerance in performance. The performance figures quoted
by Tolerance representatives and the requirement of a 250Mb/s connector indicate that SBMS
synchronization is several orders of magnitude more efficient than that used in Tolerance. In addi-
tion, Tolerance has no provision for shared memory, has a fifteen second outage during integration
versus two to four in SBMS, and it is unclear as to whether disk integration is even supported by

Tolerance.

98

Tolerance 2SBMS
off-the-shelf nodes yes yes
off-the-shelf interconnect no yes
shared memory support no yes
enhanced fault detection limited multiple levels
interconnect bandwidth 250Mb/s 10Mb/s
performance degradation 30-40% 1%

integration pause

10-15 seconds

2-4 seconds

new disk integration

?

yes

Table 9. Comparison of Tolerance and dual mirrored system

4.2.5.2 Triple Mirrored Systems and Tandem S2

The Tandem Integrity S2 [16], [33] is a UNIX fault tolerant machine sold by Tandem computer. It
consists of three tightly coupled MIPS R2000 processors which are connected to two voters that
are used to access peripherals. Not all details of the system are available. One interesting point is
that when a processor fails, there is a -2 second pause in operation for integration of a new node.

No literature discusses integration of a new disk.

Tandem S2 3SBMS
off-the-shelf-nodes i no yes
off-the-shelf interconnect no o yes
shared memory support yes yes
performance degradation ? 2%
integration pause 1-2 seconds 2-4 seconds
new disk integration ? yes
enhanced fault detection very high levels multiple levels

Table 10. Comparison of Tandem S2 and triple mirrored system

Tandem’s main advantage over SBMS, as shown in Table 10, is fault detection and low level
recovery. SBMS relies on native operating system and hardware fault detection whereas Tan-
dem’s machine has high levels of additional hardware fault detection and recovery. SBMS, how-
ever, can offer higher levels of fault detection at an increased performance penalty. Given that
Tandem requires special purpose hardware whereas SBMS uses off-the-shelf chips, high-end
SBMS systems can use cutting edge processors soon after they are made available. Tandem’s chip

99

technology is likely to lag several years behind. Another SBMS advantage is obviously the cost.
At 1/5 (estimated) the initial investment, and with minimal replacement costs and maintenance

fees, SBMS offers much lower price/tault tolerance.

4.2.6 SBMS and the Sentry Mechanism

None of the algorithms presented in this section or in Chapter 3, have any dependence on the sen-
try mechanism. However, the advantages of integrating the algorithms into the sentry mechanism
framework are many, and covered in Chapter 2. The algorithms relating to SBMS are very similar
to the single computer algorithms developed and implemented with the sentry mechanism.
Instead of writing a global sequence number to a journal, SBMS has execution synchronization
with its partners. The principle of operation is identical and the implementation relies on the sen-
try mechanism’s operating system entry and exit control points as well as its bypass facility (as in
the case of data synchronization points). This serves as another example of the sentry mecha-
nism’s perfect fit with the requirements of a complex, practical, and desirable fault management
policy.

4.3 Distributed Systems

4.3.1 Introduction

Distributed systems are computing environments that consist of multiple processing nodes and an
application that has cooperating components executing across these nodes. Figure 45 shows how
fault management is introduced in such systems. The purpose of the investigation of these sys-
tems was to see how the sentry mechanism could be integrated with existing recovery algorithms.
Distributed recovery algorithms are based on checkpointing or a combination of journaling and
checkpoint. In algorithms where journaling is used the contents of messages are saved to stable
storage so that if a node fails, its state can be restored by replaying the saved messages.

In the course of the investigation a new type of recovery algorithm was developed which has been
called hybrid checkpointing. This new type of algorithm is based on the journaling of message
order, rather than message content. To recover a failed node, all nodes that have communicated
with the failed node are rolled back to their previous checkpoint and their execution is recreated
by using the message ordering information. This technique is a direct extension of the sequencing
algorithm of Chapter 3 to distributed systems. By saving message order instead of content, their is
a potential savings in both stable storage requirements as well as journaling overhead. In order to
make a recovery based on message order possible, a new form of checkpointing has been devel-

100

Node | Node 2
Application Application Application] |Application
Process Process Process Process
Recovery Manager v, - Recovery Manager
jOHITiAl andger) sed OUImAL anager | e

Node 3

Applicatiorf |Application
Process Process

Figure 50. Architecture of three node distributed system

oped. The hybrid checkpointing algorithm provides nodes with the performance advantages of

independent uncoordinated checkpointing while producing a consistent checkpoint. This section
first presents the new algorithm and its variants, compares it to existing algorithms and then
briefly discusses integration of distributed algorithms with the sentry mechanism. The tone of the
section is slightly different than that of the rest of the thesis because the description of the algo-
rithm has been formal in preparation for submission to a journal.

4.3.2 The Hybrid Checkpointing Algorithms
Different distributed recovery algorithms can be characterized by their fault-free overhead, the
overhead of committing output [11] to the outside world and by the number of nodes that are

required to undergo a rollback after one node has failed.

Fault-free overhead and the cost of committing outputs is considered here to be the areas where
efficiency is most important because failures are relatively rare in modern systems. In addition,
since tightly couple applications will have to be suspended until a failed node recovers, forcing
multiple nodes to recover simultaneously will not greatly impact recovery latency. Existing algo-
rithms make trade-offs between the three areas presented, typically doing well in one area, while

101

sutfering in another. These algorithms can be divided into three categories: pessimistic logging.
optimistic logging and consistent checkpointing. Each category is briefly described here with
respect to their characteristics. Throughout this section the term recovery unit (RU) [36] is used to
refer to the smallest unit of computation that can be recovered. Typically, systems are based on the
recovery of nodes or processors, but individual processes running on the same node can be treated
as separate RUs with respect to a distributed recovery algorithm.

Pessimistic logging algorithms [7], [37] save message contents synchronously to stable storage.
There are a few variations on this theme, but generally a node saves all incoming messages.
Nodes are allowed to take checkpoints without coordinating with other nodes and if a node tails
only that node is required to rollback to its previous checkpoint. After recovering the checkpoint,
the node plays itself the saved messages and eventually recreates the state it had at the time of the
failure. These types of algorithms are ideal in environments where writing to stable storage is
inexpensive or communication is infrequent with respect to the overhead of writing to stable stor-

age.

In optimistic logging algorithms [17], [18], {20], [34], [36], [37] message content is journaled
asynchronously. Due to the asynchronous nature of the journaling, a node failure can result mes-
sages that were never stored in stable storage. These algorithms typically are only concerned with
being able to recover the state that exists for particular events, most notable, the sending of mes-
sages to the outside world. The internal state of the system is considered of secondary importance,
but any state that caused an external output to be produced must be recoverable. Typically, an out-
put commit algorithm is executed that makes the state that lead to an output stable. Message
dependency information is augmented to communication so that the commit algorithm can direct
nodes that the output node’s state depends on to flush their journals to stable storage. In these
algorithms, a failure can result in non-faulty nodes being forced to rollback.

Consistent checkpointing algorithms [8], [21], [24], [37] are based entirely on checkpointing.
When a state must be made recoverable, all nodes take a consistent checkpoint. While no other
form of overhead is present in these algorithms, taking a consistent checkpoint, described in detail
later, is an expensive operation that requires all computing to be suspended for the duration of the
checkpoint.

The new algorithms are both based on the same basic principles. The first algorithm, called the
pessimist-hybrid algorithm, is tuned for systems where system output is frequent. As in pessimis-
tic logging algorithms, there is no overhead for committing external outputs and there is a degree
of synchrony in journaling. It is better than pessimistic logging, however, because message order
is journaled, rather than message content. Also, synchronous journaling to stable storage can be

102

avoided given certain conditions. These tactors can result in savings of several orders of magni-
tude in the amount of stable storage required and can otten result in improved fault-free perfor-
mance.

The second algorithm. called the optimistic-hybrid algorithm, is tuned tor systems for which
internal communication dominates the rate of external output. This algorithm shares characteris-
tics with optimistic logging in that journaling is asynchronous. reducing tault-tree overhead, and a
multi-host protocol 18 executed when external output is made. Optimistic logging algorithms jour-
nal message content while the optimistic hybrid algorithm again only journals information on
message ordering, resulting in reduced stable storage requirements and increased performance.
The output commit protocol requires only loose synchronization of nodes and is based on the well
known two-phase commit algorithm.

Both algorithms share a new checkpointing scheme that has characteristics in common with both
asynchronous and synchronous checkpointing. When a RU checkpoints without coordination with
other RUs, as in pessimistic logging, it is called an asynchronous checkpoint. Synchronous check-
pointing is performed by consistent checkpoint algorithms and results in a halt of all processing
while all RUs take a checkpoint. The checkpointing algorithm introduced here is called hybrid
checkpointing because it offers the performance advantages of asynchronous checkpointing, but
requires multi-host coordination like synchronous checkpointing. This section presents each algo-

rithm and proves it correct.

4.3.3 Assumptions

It is assumed that the system consists of n RUs that form an application or a system. Each RU has
a unique identifier and there is a seniority function, such as identifier value comparison, which can
be applied to the identifiers. RUs in actuality do not need to reside on different processors, but
their communications are restricted to message passing. An RU can consist of one or more threads
of execution whose basic behavior can be non-deterministic. Like in the algorithms of Chapter 3,
any non-deterministic events have information saved to the journal so that they can be recreated.
In the course of describing the algorithms, RUs are often referred to as taking particular actions to
write to the journal or recover their state. In reality, sentry policies are performing these actions on
behalf of the RUs.

It is also assumed that RUs can communicate with any other RU. Unlike the majority of existing
rollback-recovery algorithms, however, the communications channels are not assumed to be reli-
able. Reliable communications protocols are part of the algorithms themselves. Conceptually, one
can think of each RU as having a communications handler, CH, that receives messages from the

103

network, queues them. acknowledges them and delivers them to the application in the correct
order. Sequence numbering and an algorithm such as the sliding window protocol is used by the
CH 1o transparently provide the application FIFO communications channels. Like most rollback-
recovery algorithms partitions of the physical system are not handled. Importantly, the algorithms

can recover even in the presence of multiple simultaneous failures.

Each RU must have access to a stable storage device with enough space to hold two complete
checkpoints plus journaled information. When a node fails, it is assumed to do so in a fail-stop
manner and all healthy RUs are informed of the failure. The faulty node begins a recovery proce-
dure to restore the state of the failed RUs that were running on the node and if the node is perma-
nently tailed, another node must be given access to the failed node’s stable storage in order to

recover the failed RUs.

4.3.4 The Pessimistic-Hybrid Algorithm

4.3.4.1 Overview

In the pessimistic-hybrid algorithm, RUs synchronously record information about the messages
they receive in stable storage. Periodically, a RU, or RUs, will determine that a global checkpoint
should be taken and at that time initiate the execution of the hybrid checkpoint algorithm. Once
the checkpoint algorithm is complete, the system has a consistent point to rollback to upon a tail-
ure and the previous checkpoint and journal are deleted. When a failure occurs, all RUs must roll-
back to the most recent committed checkpoint and begin re-execution. RUs replay their execution
by ordering incoming messages the same way they did in the original run.

This section presents the components of the algorithm related to reliable communications, fault-
free execution, external output, checkpointing, and recovery. The concluding part of the section
contains proofs of the algorithm’s correctness.

4.3.4.2 Handling Communications Errors

Because the communications medium is not assumed to be reliable, the algorithm must make
allowances for errors. This is done with the standard acknowledgment protocols. All messages
received by a RU are acknowledged when they are received. When a message is sent by a RU, the
RU’s CH stores the message content in volatile memory until it receives the message’s acknowl-
edgment. If it does not receive the acknowledgment within a specified time-out period, the mes-
sage is resent. The CH also uses a sequencing algorithm such as the sliding windows protocol to
enforce FIFO communications. All messages, including messages that are part of the checkpoint-

104

ing protocols. are passed through the CH. The internal messages must use ditferent sequence
numbers, however. so that they are transparent with respect to the sequencing ot application mes-

sages.

4.3.4.3 Fault-Free Execution

Each RU; maintains a checkpoint interval number, Cl;, a send message sequence vector. MS;, with
an entry for each RU in the system, and a receive message sequence vector, MR,. When a RU
begins taking a new checkpoint it increments the checkpoint interval, and when it sends a mes-
sage to RUj, it increments the message sequence number it keeps for the target RU, MS,[j]. The
checkpoint interval and the send message sequence number MS,[j], are both appended to mes-
sages sent to other RUs. In addition, if the communications system does not already allow a
receiver to identify the sender, the RU identifier must also added. This additional information

overhead constant, or O(/) in size.

When RU;, receives a message from RU; (i #), it notes the logical time at which the message was
received, the sender’s identifier, and the message sequence number. The logical time is a value
which indicates the logical point in the RU’s execution it received the message. For example, if
messages are received synchronously, then the count of the number of system calls executed
before the message was received can serve as the logical time reference. These pieces of informa-
tion together form a journal record. The RU also saves the received sequence number in the send-
er’s entry of the receive sequence number vector, MR {j], and then initiates an asynchronous flush
of the volatile data to stable storage with the restriction that the data is fully flushed betore any
messages are sent by the RU. This is where the algorithm gets the name pessimistic: journaling is
done in a synchronous manner like the synchronous journaling performed by pessimistic recovery

algorithms.

4.3.4.4 Output Commit

The pessimistic hybrid algorithm does not require any form of output commit when a message is
sent to a receiver external to the system. Information on stable storage is sufficient to recreate the
state of the RU at the time of the output. However, if it is not possible to resend messages to the
outside world during recovery (e.g. sending output to a printer), then the RU must synchronously
record in stable storage the fact that the output was made so that it is not remade during recovery.

105

4.3.4.5 Hybrid Checkpointing

Periodically, one or more RUs will decide to initiate a checkpoint. The time between checkpoint
sessions is called a checkpoint interval. The issues related to checkpoint interval are the same as
presented in Chapter 3. Existing methods of determining the checkpoint interval include intervals
based on elapsed time. limiting the size of the journal, and on external stimulus such as user direc-
tion. A RU considers itselt the checkpoint leader CL,,, for checkpoint interval n, until its forced to
give up this roll to another RU or it completes the checkpoint session. If more than one RU
believes its the checkpoint leader, RUs defer in a deterministic manner to a single leader through a
method called leadership seniority. One possible approach, and the method used here, is to defer
leadership to the RU with the lowest RU identifier.

The leader RU begins a two phase commit protocol by sending checkpoint initiate messages to all
the other RUs instructing them to take a checkpoint. When a RU receives this initiate message, it
takes a checkpoint of its state by saving its send and receive message sequence vectors, check-
point interval number, as well as necessary registers, virtual memory state, and data structures
such as the memory map, process control block and communications connection structures. After
the checkpoint begins, a new journal is begun and after the checkpoint is entirely in stable storage,
the RU sends a message to the checkpoint leader indicating that the checkpoint is stable. This
message is called the checkpoint prepared message. When the leader has collected a checkpoint
prepared message from all other RUS, it sends a checkpoint commit back to all the RUs. A RU
receiving a commit message can then mark the checkpoint as committed and delete the previous
checkpoint and journal.

If a RU believes RU; is the current checkpoint leader and it receives another checkpoint initiate
message from RUj, it applies the seniority function to determine if RUy is senior to RU;. If it is, it
sends its checkpoint prepared message to the new leader, RU,. If it has already sent a checkpoint
prepared message to RUj, it sends another one to RU;. Otherwise it ignores the new request. A
leader that receives a checkpoint initiate message from a senior RU will immediately stop its
checkpoint protocol and act as a participant in the checkpoint with the senior RU as the leader.

By itself, this type of checkpoint can lead to an inconsistent checkpoint state [8]. Consistency will
not be formally treated here as it has been dealt with extensively in literature. Consistency implies
that the RUs must agree as to which messages have been sent and which have been received. The
two types of inconsistent checkpoint are shown in Figure 51. The checkpoint in A leads to a mes-
sage that RU; has received, but that RU; believes it hasn’t sent. After the RUSs recover, RU; will
send the message again to RU;. The message in B is called lost because after RUS rollback to their
checkpoints RU; will believe that it has sent the message, but RU; will not have received it.

106

RU, —4 > RU, 1=

RU, 77 e RU;

A) Duplicated Message B) Lost Message

V] Checkpoint

Figure 51. Inconsistent checkpoints
These two cases can be recognized during an execution by the receiving RU; because in such a
case the checkpoint interval number in the received message, CI,,,, is different from CI;. Each case
is dealt with specially to make a potentially inconsistent checkpoint consistent. If CI; < CM,
(case A), the reliable communications protocol causes the message to be ignored during recovery
because the restored receive message sequence vector will indicate that the message has already

been received.

If CI; > CM,, (case B), there are two subcases that must be handled. In the first subcase, CH;
receives the message, stores the contents in stable storage with the journal, and then sends an
acknowledgment to CH;. It a failure occurs, RU; will have the message replayed to itself by its
CH during recovery. The second subcase is when, after a checkpoint has been committed, net-
work delay results in messages that are lost because they have not been received at RU; and there-
fore have not been saved to stable storage by RU;. To insure that messages of this type are resent,
all messages sent by a RU that have not been acknowledged at the time the RU takes a checkpoint
are saved along with the checkpoint. If the checkpoint is committed and a rollback takes place

these messages are resent and treated as unacknowledged.

This checkpointing protocol is called hybrid because it obtains a consistent checkpoint like syn-
chronous consistent checkpoint algorithms do, but it obtains performance comparable with inde-
pendent asynchronous checkpointing. Figure 51 shows an example execution of the hybrid

checkpointing protocol.

4.3.4.6 Recovery

When a RU fails, the entire system begins a recovery. If a failure occurred during a checkpointing
session, RUs may have two checkpoints in stable storage, Cp and Cp +-C P will always be marked

107

RUI -
RU2 -
RU3 ! o

v Checkpoint
——» Application Message

Checkpoint Protocol Message

@ Checkpoint leader sends checkpoint initiate messages 1o all other RUs

@ Participant receives message, increments checkpoint interval, and takes a checkpoint
@ Checkpoint is stable so checkpoint prepared message is sent to leader

@ Leader has received all prepared messages; checkpoint commit is sent

@ RU receives a checkpoint commit and can delete the old checkpoint

Message has a lower checkpoint interval number than receiving RU so its contents
must be stored in the receiver's new checkpoint so that the message can be replayed in
recovery

Received message has a higher checkpoint interval than RU so information is stored
in the RU's new checkpoint indicating that the message is ignored on recovery
Figure 52. Example execution of hybrid checkpointing protocol

committed, but Cp,; may or may not be committed, and even if it is not marked committed, it
may in fact be the case that the checkpoint is committed, but that the RU failed before it updated
the checkpoint’s status. To obtain the correct checkpoint to rollback to, all RUs send their most
recent committed checkpoint’s checkpoint interval number to a designated node such as the most
senior RU or the node that failed (an alternative if there are relatively few RUS is to broadcast the
number to the other RUs). If the senior node receives a message indicating that Cp,; is committed
it can tell the other nodes to rollback to Cp; because it means that it was committed. If no mes-
sage is received indicating Cj,, ; was committed, the RUs must delete Cp,; if they have it in sta-
ble storage, and rollback to Cp,.

Along with the rest of the RU state, a recovering RU restores the checkpoint interval number and
the send and receive message sequence vectors that are stored in the checkpoint. It then begins
execution. All outgoing messages are sent again (see the discussion of output messages in Section

108

+.3.4.4) and the CH tor each RU reads the journal from stable storage and forces messages that are
received to be delivered in the same order and at the same logical time as is recorded in the jour-
nal. For example. messages trom difterent RUs may arrive at a receiving RU in a different order
than recorded in the journal. The CH, however. delivers the messages to the application in the
recorded order and at the correct logical time. Messages that were not recorded in the journal are
buftered until recovery is complete and once a RU has been delivered all the messages recorded in

the journal. it is delivered any buttered messages and journaling continues.

In some cases it may be desirable to only rollback the RUs upon which the failed RU’s recovery
depends. An additional dependency vector can be kept and added to the journal records and then
used to determine the RUs that must rollback [38]. This is considered an optimization that has
been investigated in previous algorithms and is not be covered here.

4.3.4.7 Proof of the Pessimistic-Hybrid Algorithm

To prove that the algorithm is correct it must be proven that only one RU will ever commit a
checkpoint, that the algorithm generates a consistent global checkpoint, that the local RU state
that produced a message can be exactly recreated after a failure, and that the journal plus the
checkpoint will result in a consistent state (i.e. that a recovering RU will never halt waiting for a

message that will never arrive).
Lemma 4. At most one RU will send a checkpoint commit message for a given checkpoint.

Proof. By contradiction. Without loss of generality, assume that there are two RUs, RU; and
RU;, with RU; senior to RU;. Assume that they both send checkpoint commit messages. This
implies that each of them have received checkpoint prepared messages from all other RUs includ-
ing each other. If RU; has begun checkpoint session p when it receives the checkpoint prepare
message for checkpoint p from RU;, it will not send a checkpoint prepared to RU; because it is
senior and therefore considers itself the leader. If it hasn’t started a checkpoint, it will take a
checkpoint upon receiving the checkpoint prepare, and increment CI; to p. When it starts a check-
point, CI; will be incremented to p+/, and therefore it will not lead the same checkpoint as the one
RUj lead. Hence, only one will send the checkpoint commit message for checkpoint p.l

Lemma 5. The hybrid checkpointing protocol creates a consistent global checkpoint.

Proof. Consistency implies that there will be no lost or duplicated messages when a rollback to
the checkpoint takes place. In the case that there is no communication across from one checkpoint
interval p to checkpoint interval p+1 the checkpoint will be consistent. There are two inter-inter-
val cases to be dealt with. Consider two RUs, RU; and RU;, with a message, m, sent from RU; to

109

RU;. The acknowledge of the message receipt is ack,,. The checkpoint interval sent with the mes-
sage is denoted as CI,,. Messages sent from RU; to RU; are assigned the sequence number

Seql_,j(m)

case 1: Cl; < Cl,,. When the message is received by RU;, MR[j] < Seq;_,(m). When RU;
takes checkpoint p+1. it saves MR;. After a failure, RU, restores MR, and RUj begins deterministi-
cally executing so that the message will be assigned the same sequence number, Seq; _j(m). When
itarrives at RU; it will be discarded because MR;[j] = Seq;_,;(m).

case 2: CI; > CI,,. There are two subcases to consider:

subcase I: when RU; takes checkpoint p+1, it has not received ack,,. When RU; check-
points it saves the contents of m to stable storage. When it recovers it treats the message as an
unacknowledged message and resends it. Note that the receiver always journals messages with Cl,
> CI,, so if RU; had saved the message betore it rolled back it will replay it to itself during recov-
ery and using sequence numbers, ignore the resent message. If it did not save the message then it
will fully recover and then receive and acknowledge the resent message.

subcase 2: when RUj takes checkpoint p+1/, it has received ack,,. The contents of m will
not be saved by RU; at the checkpoint, but the acknowledgment implies that RU; has already
saved the message to stable storage and therefore can replay it during recovery.

Since the hybrid algorithm results in no duplicated or lost messages, a consistent checkpoint is

guaranteed. |

Lemma 6. The local RU state that resulted in a message being sent will be exactly reproduced
after a rollback.

Proof. A RU’s state is created deterministically with the exception of message receipt and non-
deterministic events such as inter-thread synchronization. For a state to be recreated all messages
that the state depends on must be received at the same logical time as in the fault-free execution.
At the time a message, my, is sent by RU,, it has completed saving information on stable storage
that relates to all messages, m,, that it has received and the outcomes of all non-deterministic
events it has executed. During recovery the RU depends on other RUs to resend the messages. It
buffers messages received before the journaled logical time and blocks waiting for messages that
have not yet arrived when it reaches the recorded logical time guaranteeing that it will receive the
messages at the same logical time. When it executes a non-deterministic event it forces the out-
come to match the one recorded in the journal. Once the recovering RU; has received all mes-
sages, m,, and executed all non-deterministic events which lead to the state that produced mg, m;
will be recreated. Induction is used on all RUs, RU,, which sent the messages, m,, implying that

110

they will resend the messages. m,. during recovery. Theretore. all RU states that resulted in a mes-

sage being sent will be recreated after a rollback. |

Theorem 3. The combination of the pessimistic-hybrid journals and most recent committed

checkpoint results in a global consistent state.

Proof. Using Lemma 5 it is guaranteed that the rollback point is consistent. By applying
Lemma 6 it is assured that the state in the journal will result in all messages being resent during
recovery. This implies that no messages will be lost. The other consistency condition is that no
messages will be received twice by a RU. This case is handled by the communications protocol
which causes messages with duplicated sequence numbers to be ignored. Therefore, the state
resulting from the checkpoint and the journal will be consistent. |

4.3.5 The Optimistic-Hybrid Algorithm

4.3.5.1 Overview

The optimistic-hybrid algorithm is similar to the pessimistic-hybrid algorithm because it uses the
same hybrid checkpointing and reliable communications protocol. What is different is that instead
of synchronously journaling message order information to stable storage, the ordering informa-
tion is asynchronously journaled and a commit protocol is used to commit new journal contents.
The state of the system as seen from the outside can always be recreated if the journal commit
protocol is applied before a message is sent to the outside world. This form of journaling raises
the amount of information that must be added to messages from O() in size to O(n) in size. The
algorithm is more efficient than the pessimistic-hybrid algorithm in systems where external output
is infrequent with respect to communication among RUs because synchronizing with stable stor-
age only occurs when output must be committed. This section discusses the behavior of the algo-
rithm during fault-free execution, output commit, and checkpointing. It concludes with proofs of

the algorithm’s correctness.

4.3.5.2 Handling Communications Errors

The communications handler functions are identical for both algorithms (see Section 4.3.4.2).

111

4.3.5.3 Fault-Free Execution

Like in the pessimistic-hybrid algorithm, each RU; maintains a checkpoint interval number, CI;, a
send message sequence vector, MS;. and a receive message sequence vector, MR;. In addition, the
RUs maintain a global sequence number, GS;, and an uncommitted dependency vector, UD;. GS;
is incremented each time RU; sends a message. This differs from the values in MS; which keep
track ot the number of messages sent to each RU. UD; has entries which are global sequence num-
bers of other RUs that the current state depends upon and that haven’t been committed to stable
storage. It is initialized to all null values. RUs append their global sequence number and uncom-
mitted dependency vector to all outgoing messages and when RU; receives a message it updates
UD; by comparing each entry with the received vector, UD,y,. If UD,y[n] > UDj[n], it copies
UD,,[i] to UDjn]. It stores the same message receive information that the pessimistic-hybrid
algorithm records in volatile storage with the addition of the GS;. This is where the algorithm gets
the name optimistic: like optimistic logging algorithms, journaled information is saved in volatile
memory and can be asynchronously copied to stable storage and like most optimistic logging
algorithms, O(n) information is added to messages.

4.3.5.4 Output Commit

When a RU is about to send a message to the outside world it first executes a multi-host commit
protocol in order to guarantee that the state that produced the output can be recovered after a fail-
ure. The RU initiating the journal commit, RU,, is called the journal commit leader (referred to as
the commit leader). The commit leader begins a flush of any journal it has in volatile memory and
then examines UD; and sends a journal commit message to all RUs, RUy, such that UD;[n] is not
null. The journal commit message contains UD,{n] and indicates that RU;'s current state depends
on RU,’s state that lead to the sending of the message with the global sequence number UD/[n].
When a RU receives a journal commit message it makes sure that all journal records that were
stamped with global sequence numbers less than or equal to the number sent in the journal com-
mit are saved in stable storage. It then updates a value in the journal called the committed
sequence number, CS;, and sends a journal committed message back to the leader. CS, is kept in
stable storage and indicates the highest journal record that has been committed. When the leader
has received back all the expected journal committed messages, it marks all UD; entries null and
can proceed with the output. Note that the RU will not process any more received messages until

after the output has been made.

A RU can at any time asynchronously flush its volatile journal to stable storage but the flushed
data is not committed until the commit protocol is executed. Increased performance can result

12

when data is already in stable storage at the time a RU receives a journal commit so RUS should
asynchronously flush volatile journal records to stable storage as they are created. Figure 51
shows an example execution of the output commit protocol.

RUI 5 3 @ - 44© ? >
e
RU2 ol LA >
® ©

— Application Message

""""" #= Qutput Commit Protocol Message
— External Qutput

Message Record Committed by Protocol
@ Journal commit leader sends journal commit messages to RUs it depends on

@ Participant receives message, flushes messages up to the sequence number indicated,
and updates the committed sequence number in stable storage

@ A journal committed message is sent back by participants
@ Leader has received all committed messages; it can now send external output

@ External message is sent

Figure 53. Example execution of output commit protocol

4.3.5.5 Hybrid Checkpointing

The checkpointing protocol followed by the optimistic-hybrid algorithm is identical to that
described in Section 4.3.4.5. At a checkpoint, RUs record their current global sequence number
and their message sequence vectors (note that the uncommitted dependency vector is not saved).
The uncommitted dependency vector is not reset at this time because the checkpoint may not suc-
ceed so dependent state information cannot be assumed to be stable when a RU decides to do out-
put. Between the point that a RU takes a checkpoint and the time that it commits the checkpoint it
will have two journals, one associated with the old checkpoint and a new one it begins after taking
the new checkpoint. If it becomes an output commit protocol participant in this time window, it

13

may have to commit parts of both journals. Once the checkpoint is committed. the old journal can
be deleted.

4.3.5.6 Recovery

When a node fails all RUs rollback to their committed checkpoints, delete uncommitted check-
points and re-execute as described in Section 4.3.4.6. It a failure takes place during the check-
pointing protocol a RU may have two journals, one associated with the committed checkpoint and
one with the uncommitted checkpoint. The RU first reads the committed sequence number from
the most recent journal and uses the committed part of the journal(s) to guide its execution. Once
all messages with committed records have been received by the RU as directed by the CH, the
RU’s recovery is complete.

4.3.5.7 Proof of the Optimistic-Hybrid Algorithm

The same conditions proven in the pessimistic-hybrid proofs must be proven for the optimistic-
hybrid algorithm. Since the checkpointing protocol is identical for both algorithms the proot of
checkpoint consistency will not be repeated here. The two conditions that must be proven are that
state which resulted in an external message can be recreated and that the combination of the jour-
nal and the checkpoint will result in a consistent global state.

Lemma 7. The local RU state that resulted in an output message being sent will be exactly

reproduced after a rollback.

Proof. A RU’s state is created deterministically with the exception of message receipt and non-
deterministic events such as inter-thread synchronization. For a state to be recreated messages
must be received at the same logical time as in the fault-free execution. At the time an output mes-
sage is sent the RU has completed saving all local information with respect to message receipt and
non-deterministic event outcome on stable storage. If the RU state at the time of output depends
on some state achieved at another RU, the uncommitted dependency vector will contain the global
sequence number of the other RU upon which the output state is dependent. Transitive dependen-
cies are kept track of using the uncommitted dependency vector update routine. Therefore, the RU
will know the maximum global sequence number of the other RUs upon which it depends. The
output commit protocol insures that output is not made until all of these states have been commit-
ted to stable storage. Therefore, the state that the output depends upon will be recreated B

Theorem 4. The combination of the optimistic-hybrid journal and the checkpoints result in a

global consistent state.

114

Proof. Using Lemma 5 it is guaranteed that the rollback point is consistent. By applving
Lemma 6 it is assured that the state that lead to system output can be recreated. What must be
guaranteed s that no RU will wait on a message which is will not be delivered in recovery. This.
too, tollows from Lemma 6. If a RU is waiting for a message to arrive during recovery it means
that the journal record associated with the message was committed to stable storage. Since the
only time a record 1s committed is in the output commit protocol, and since transitive dependen-
cies of any record committed are also committed, the state that resulted in the message being sent
will be recreated. The other consistency condition is that no messages will be received twice by a
RU. This 18 guaranteed by the RU’s CH in the manner described in Lemma 3. Hence, there will be
no duplicated messages. Therefore, the state resulting from the checkpoint and the journal will be

consistent. [|

4.3.6 Comparison With Existing Algorithms

In this section a qualitative comparison of the pessimistic-hybrid and optimistic-hybrid algo-
rithms with existing algorithms is made. This task is difficult because it is rare tor different algo-
rithms to be based on the same assumptions. For this reason actual algorithms are not used;
instead, the categories of algorithms mentioned in the introduction to this section: pessimistic log-
ging, optimistic logging and consistent checkpoints. Optimistic logging refers to receiver based
logging as sender based logging is not n-fault tolerant. One exception to the categories is the
Manetho [11] algorithm which is based on assumptions identical to the ones that the hybrid algo-
rithms are based on. All the algorithms are compared on the basis of what kind of data must be
journaled, how journaling is performed, the amount of data which must be appended to messages,
the output commit protocol performed, the checkpointing protocol performed and the extent of
rollback. Table 11 summarizes the comparison. The extent of rollback is considered to be a fea-

Algorithm Type Data Journal Message Output Checkpoint (ﬁ‘xl:j:lllt-
Journaled | Method Overhead Commit Method back
Pessimist Logging content sync none none async failed
Optimistic Logging content async O(n) coord. sync | coord. sync | > failed
Consistent Ckpt none none none cnsmt. ckpt sync all
Manetho content async no bound none async failed
Pessimistic-Hybrid . order semi-sync 010)) none hybrid all
Optimistic-Hybrid order async O(n) coord. sync hybrid all

Table 11. Qualitative comparison of rollback recovery algorithm types

s

ture ot secondary itmportance because if all RUs are recovering simultaneously, the number of
RUs recovering will have little impact on recovery latency. This measure will not be used in com-

parisons.

As mentioned betore, the pessimistic-hybrid scheme 1s tuned for systems with a high degree of
external output. The other recovery algorithms that are tuned tor this are pessimistic logging and
Manetho. As mentioned earlier, pessimistic logging algorithms require that message content be
journaled. Manetho also requires message content to be journaled, and if the system communica-
tions rate is high Manetho must trequently write the journal to stable storage to prevent message
overhead from growing out of control. In addition, Manetho must flush the journal to stable stor-
age before external output is made. Pessimistic-hybrid requires a coordinated checkpoint, but the

protocol provides performance similar to asynchronous checkpointing.

Algorithms which are tuned for systems with infrequent output are optimistic logging, consistent
checkpointing, Manetho and optimistic-hybrid. Consistent checkpointing is rarely considered
practical because consistent checkpointing is expensive and must be executed any time an exter-
nal output is made. Optimistic logging and Manetho both require entire message content to be
journaled, while optimistic-hybrid only journals message order information. Optimistic logging
algorithms require a coordinated output commit and Manetho requires the sender’s journal to be
synchronously flushed to stable storage. The output commit protocol of optimistic hybrid has effi-
ciency comparable with optimistic logging output commit protocols and checkpointing overhead
is again comparable with asynchronous checkpointing.

In both cases, the major strengths of the hybrid algorithms are that the amount of data that needs
to be journaled is potentially orders of magnitude less than that required in comparable algo-
rithms, and that the hybrid checkpointing provides an efficient method for obtaining consistent
global checkpoints.

4.3.7 Distributed Algorithms and the Sentry Mechanism

The algorithms discussed in this section were designed from their inception to be application-
transparent. Since the common feature of all of them is communications journaling and replay, it
is that facet that must be evaluated in terms of implementation as a sentry. If a system call that is
communication related is viewed as an external input, than proof that information about the call
can be easily journaled by a sentry is seen in the single computer implementation of external
device journaling. Likewise, the recovery of this journaled data would be performed in a manner
analogous to replaying external inputs from a journal as is done in the single computer recovery.

116

The fact that the actions required by distributed algorithms fits so neatly into the sentry mecha-
nism indicates that the distributed system algorithms can be combined with the single computer
algorithms resulting in a RU model that consists of concurrent communicating processes with sta-
ble storage on a single processor. The single computer algorithms provide optimized journaling
and recovery for the single node, while the distributed algorithms would handle inter-node recov-
ery. This is new in that distributed recovery algorithms have ignored the single computer concur-

rent application facet of a system.

4.4 Summary

Two areas of multiple computer fault tolerance were addressed in this chapter. The first area is
that of mirrored systems. Software algorithms based on the sentry mechanism were presented that
allow two or three otf-the-shelf processors to appear as one highly reliable, continuously available
processor. Application-transparency again means that no modification to any existing software is
necessary. Synchronization is maintained through the use of data and execution synchronization
points. Fault detection options like detection through synchronization and detection through data
comparison are presented that can allow a system to be tailored to the performance and reliability
needs of the target environment. The integration algorithms make it possible to replace a failed
processor with a new one with minimal disruption to system service. Fault free overhead ot such
systems is calculated to be typically less than 1 to 2 percent. These figures, combined with the
many advantages of a purely software approach to high availability make this approach fill a long
existing void in commercial reliability offerings. The projected systems compare extremely well
with hardware based solutions that are orders of magnitude more expensive.

The second area of multiple computer fault tolerance addressed is that of distributed computing.
Existing algorithms that provide recovery of failed distributed applications were reviewed and
two new algorithms presented. The new algorithms, the optimistic hybrid and the pessimistic
hybrid, are both based on hybrid checkpointing, an approach to consistent checkpointing that pro-
vides for loose synchronization instead of the performance expensive, tight synchrony of previous
algorithms. Systems where output commit is frequent are targeted by the pessimistic hybrid
whereas the optimistic hybrid algorithm is best for systems with infrequent output. These algo-
rithms both journal only message order instead of the content based journaling of previous algo-
rithms, potentially oftering improved performance. Integration of distributed recovery algorithms
with the sentry mechanism is discussed and the contention is that the sentry mechanism is an ideal

frame work for providing their application-transparent execution.

117

Chapter 5

Contributions and Future Directions

5.1 Contributions

The goal of this thesis was to define, implement and demonstrate an effective support mechanism
for application-transparent fault management. A proposed infrastructure for dynamically tunable,
application-transparent fault management policies, called the sentry mechanism, was defined and
implemented. The sentry mechanism is based on the concept of operating system service encapsu-
lation. It was hypothesized that encapsulation, with optional service bypass, would provide suffi-
cient power and visibility to meet the demands of even the most complex and demanding fault
management policies. The hypothesis has proven to be correct. An operating system monitoring
policy was developed and with its use a software fault was discovered in 3.0/UX. The fault was
diagnosed with the aid of a visualization tool that displays monitor data and an assertion policy
written to prevent operating system failure in the presence of the fault. These examples served as
initial proof of the concept’s validity.

In order to convincingly validate the sentry concept, a single area of fault management, fault
recovery, was selected as representative of highly system dependent and complex tault manage-
ment areas. By proving that the sentry mechanism is sufficient for.the design and implementation
of practical fault tolerant techniques spanning the range of computer configurations, from single
computer to mirrored systems to distributed systems, the sentry concept would be considered sut-

ficiently demonstrated.

118

Prior to this work. the modern computing environment of highly interactive, concurrent. disk
based applications had not been fully investigated with respect to practical software based fault
tolerance. This thesis has presented the design and implementation of single computer fault toler-
ance with the use of journaling and checkpointing policies. Development of these policies lead to
new algorithms for concurrent process recovery. disk checkpointing, and checkpoint snapshots.
Problems confronting the design of a practical solution were identified and individually
addressed. As a result of the combination of the journaling and checkpointing, application-trans-
parent fault tolerance is provided to these modern applications. Hard disk drives, a common and
inexpensive commodity, are shown to be an ideal and efficient stable storage medium. When the
policies are in effect a single computer, concurrent application, like the pervasive X window sys-
tem and its client programs, is provided fault tolerance with less than 10 MB of recovery data
storage requirements and less than 5% performance overhead in the average case.

Multiple computer fault tolerance was divided into the two areas of mirrored systems and distrib-
uted systems. Algorithms ideal for sentry mechanism implementation were defined that allow oft-
the-shelf processors to be seamlessly connected, providing a system view of one, highly available
system. These new algorithms, which all integrate well with the sentry concept, solve the issues of
processor synchronization, fault detection and integration of a new processor in the event of a fail-
ure. Performance projections show less than a 1% overhead for typical applications and less than
a 30 minute integration period for attaching a new node. Because these systems provide continu-
ous availability with software, they are attractive alternatives to the much more costly hardware

based systems that are prevalent today.

Finally, the applicability of the sentry concept in the distributed recovery domain has been inves-
tigated. As an extension of the work on single computer fault tolerance distributed recovery algo-
rithms have been developed that are based on the principle of saving message order, rather than
content. The new recovery algorithms, the pessimistic hybrid and the optimistic hybrid, allow
applications to take loosely synchronized, yet globally consistent checkpoints. The combination
of journaling only message order and the loosely synchronous checkpointing can offer perfor-

mance advantages over previous algorithms.

By exploring software based, application-transparent, fault tolerance based on the sentry concept
across the domains of computing environments - single computer, mirrored systems, and distrib-
uted systems, the validity of the sentry mechanism has been experimentally verified. Performance
efficient solutions have been presented for all of these areas. Most significantly, an advanced pro-
totype of the application-transparent single computer algorithms has been implemented and 1is

119

fully tunctional, capable of recovering the largest and most complex of single computer applica-
tions with, in most cases, negligible overheads.

5.2 Future Directions

There are several orthogonal areas for future research directions. In the single computer domain,
work remains to be done with respect to the issue of network based applications that cannot use
distributed recovery algorithms because some nodes are not recovery participants. This is the case
if a fault tolerant machine is communicating with a foreign machine that has not been modified to
be aware of recovery protocols. Recovery in a network environment poses new challenges con-
cerning practicality of disk based stable storage as well as types of recovery possible.

Further work is needed to both experimentally validate the mirrored system algorithms and over-
come implementation details. Integration of the mirrored system ideas into a real network envi-
ronment promises to be an exciting undertaking.

Study of distributed recovery algorithms in realistic environments is an area where little research
has taken place. The increasing number of such algorithms (contributed to here) is a confusing
maze of trade-offs with no real experimental data. A thorough comparison of these algorithms

working under practical conditions is necessary.

Application-transparent fault detection policies based on the sentry mechanism must be investi-
gated. Development of effective and practical fault detection would compliment the sentry fault
tolerant policies as well as bring existing distributed systems closer to their theoretical assumption
of fail-stop nodes.

Because many systems that require fault tolerance also have real-time execution constraints, inte-
gration of the policies with real-time system design is desirable.

Finally, massively parallel computers (MPPs) introduce new levels of communication and inter-
connection that existing fault tolerant techniques are not equipped to handle. Failure rates for indi-
vidual nodes are high enough that when hundreds or thousands are connected together, failures
occur every few hours making efficient fault tolerance solutions to the MPP environment an area

of interest.

Chapter 6

Bibliography

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub and R. Rashid, “A new kernel foundation for
UNIX development”, USENIX 86, July 1986.

[1] D. M. Andrews, “Software fault tolerance through executable assertions”, in 12th Asilomar
Conf. Circuits and Syst. and Comput., Pacific Grove, CA., Nov. 1978, pp. 641-645.

[2] D. M. Andrews, “Using executable assertions for testing and fault tolerance”, in Proc. 9th Int.
Symp. Fault-Tolerant Comput., June 20-22, 1979, pp. 102-105.

(3] M. J. Bach, “The design of the unix operating system,” Prentice-Hall, Englewood Clitts, NJ,
1986.

(4] J. F. Bartlett, “A nonstop kemel”, in 8th Symp. on Operating Syst. Principles, Asilomar, CA..
Dec. 1981, pp. 22-29.

[5] B. Bhargava and Shu-Renn Lian, “Independent checkpointing and concurrent rollback recov-
ery in distributed systems - an optimistic approach”, in 7th Symp. Reliable Distributed Syst.,
Colombus, OH, Oct. 1988, pp. 3-12.

[6] K. P. Birman, “The process group approach to reliable distributed computing,” Comm. ACM,
vol. 36, no. 12, Dec. 1993.

(7] A. Borg, W. Blau, W. Graetcsh, F. Hermann, and W. Oberle, “Fault-tolerance under UNIX.”
ACM Trans. Comput. Syst., vol. 7, no. 1, Feb. 1989, pp. 1-24.

[8] K. M. Chandy and L. Lamport, “Distributed snapshots: determining global states of distrib-
uted systems,” ACM Trans. Comput. Syst., vol. 3, no. 1, Feb. 1985, pp. 63-75.

[9] G. Chappel, DOS internals, Addison-Wesley, 1994.

[10] H. Custer, Inside Windows NT, Microsoft Press, Redmond, WA. 1993.

[11] E. N. Elnozahy and W. Zwaenepoel, “Manetho: transparent roll back-recovery with low
overhead, limited rollback, and fast output commit”, IEEE Trans. on Comput., vol. 41, no. 5.,
May 1992, pp. 526-531.

[12] T. M. Frazier and Y. Tamir, “Application-transparent error-recovery techniques for multi-
computers”, in 4th Conf. on Hypercubes, Conc.Comput. and App., March 1989, pp. 103-108.

121

[13] D. Golub. R. Dean, A. Forin and R. Rashid, "Unix as an Application Program™. in USENIX
Summer Conference, Anaheim. CA, June 11-15, 1990.

[14] J. Gray and D. P. Siewiorek, “High-Availability Computer Systems”, [EEE Comput., Sep-
tember, 1991.

[I5] Y. Huang and C. Kintala, “Software implemented fault tolerance: technologies and experi-
ence,” in Proc. 23rd Int. Symp. on Fault-Tolerant Comput., June 22-24, 1993, pp. 2-9.

[16] D. Jewitt, “Integrity S2: A Fault-Tolerant Unix Platform”, in Proc. 21st Int. Symp. Fault-Tol-
erant Comput., June 1991, pp. 512-519.

[17] D. B. Johnson and W. Zwaenepoel, “Sender-based message logging,” in Proc. [7th Int.
Symp. Fault-Tolerant Comput., June 1987, pp. 14-19.

[18] . “Recovery in distributed systems using optimistic message logging and check-
pointing,” J. Alg., vol. 11, no. 3., 1990, pp. 462-491.

[19] T. T. Juang and S. Venkatesan, “Efficient algorithms for crash recovery in distributed sys-
tems”, [0th Conf. on Found. of Software Tech. and Theoretical Comput. Sci., 1990, pp. 17-19.

[20] T. Juang and S. Venkatesan, “Crash recovery with little overhead,” in Proc. 11th Int. Conf.
Distributed Comput. Syst., May 1991, pp. 454-461.

[21] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed systems,” /EEE
Trans. Software Eng., vol. SE-13, Jan. 1987, pp. 23-31.

[22] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Commun.
ACM, vol. 21, no. 7, July 1978, pp. 558-565.

[23] T. Lehr, Z. Segall, D. Vrsalovic, E. Caplan, A. Chung, and C. Fineman, “Visualizing perfor-
mance debugging”, IEEE Comput., Oct. 1989, pp. 38-51.

[24] K. Li, J. E Naughton, and J. S. Plank, “Checkpointing multicomputer applications,” in Proc.
10th Symp. Reliable Distributed Syst., Oct. 1991, pp. 2-11.

[25] A. Mahmood, D. J. Lu, and E. J. McCluskey, “Executable assertions and flight software”,
AIAA/IEEE 6th Digital Avionics Syst. Conf., Dec. 1984, pp. 346-351.

[26] D. Mosse, O. Gudmunsson and A. Agrawala, “The MARUTI system and its implementa-
tion,” Technical Report, Department of Computer Science, University of Maryland, June
1991.

[27] L. L. Peterson, N. C. Bucholz, and R. D. Schlichting, “Preserving and using context informa-
tion in interprocess communications,” ACM Trans. Comput. Syst., vol. 7, no. 3, Aug. 1989,
pp. 217-246.

[28] M. Pietrek, Windows internals, Addison-Wesley, 1993.

[29] R. Rashid. R. Baron. A. Forin, D. Golub, M. Jones. D. Julin, D. Orr, and R. Sanzi, “Mach: a
foundation for open systems”, in Proc. 2nd Workshop Workstation Operating Svst., Sept. 27-
29, 1989.

[30] M. Russinovich, Z. Segall, “Open system fault management - fault tolerant Mach”, CMU
Research Report. CMUCDS-92-8, 1992.

[31] M. Russinovich, Z. Segall, and D. P. Siewiorek, “Application transparent tault management
in fault tolerant Mach™, in Proc. 23rd Int. Symp. Fault-Tolerant Comput., June 22-24. 1993,
pp. 10-19.

[32] R. W. Scheifler and J. Gettys, “The X-window system,” ACM Trans. on Graphics, vol. 5, no.
2, Apr. 1986, pp. 79-109.

[33] D. Siewiorek and R. Swarz, Reliable computer systems: design and evaluation, Digital Press,
Burlington, MA. 1992.

[34] R. E. Strom, D. F. Bacon and S. A. Yemini, “Volatile logging in n-fault tolerant distributed
systems”, in Proc. 18th Int. Symp. on Fault Tolerant Comput., Tokyo, Japan, 1988, pp. 27-30.

[35] R. E. Strom, D. F. Bacon and S. A. Yemini, “Towards self recovering operating systems”,
International Conf. Reliable Syst., Los Angeles, CA, April 21-23, 1975, pp. 59-71.

[36] R. E. Strom and S. A. Yemini, “Optimistic recovery in distributed systems”, ACM Trans.
Comput. Syst., vol 3, no. 3, Aug 1985, pp. 204-226.

[37]1 Y. Tamir and T. Frazier, “Application-transparent process-level error recovery for multicom-
puters,” in 22nd Hawaii Int. Conf. Syst. ‘Sciences, Jan. 1987.

[38] Z. Tong, R. Y. Kain, and W. T.Tsai, “A low overhead checkpointing and rollback recovery
scheme for distributed systems,” in 8th Symp. Reliable Distributed Syst., Oct. 1989, pp. 12-20.

[39] UNIX Programmer’s Manual, USENIX Association, March 1986.

123

Appendix

Algorithm Pseudocode

This appendix shows more detailed C language style pseudocode for the single computer algo-
rithms of Chapter 3.

The pseudocode algorithm for journaling and replay of the journal are shown in Listing 1 and
Listing | respectively. The routine journal() is executed in the journal exit sentry and the rou-
tine replay() is executed in the recovery policy’s entry sentry. In the code, my_pid refers to the
current process’ identifier. The sleep() routine places the process pid and the passed number on
the a specified queue and puts the process to sleep. The wakeup() routine searches the specified
queue for the entry with the indicated number and wakes up the process associated with it.

An outline of the signal replay code is shown in Listing 3. Each process has a structure in which it
stores the next signal it must deliver to itself and the system call count indicating the delivery
time. At each system call a count is incremented and when the count becomes equal to the one in
the signal record the process delivers the signal to itself. It then reads the next signal, but skips
over any sleep/wakeup pairs.

The entire disk checkpointing algorithm is outlined in high level pseudocode in Listing 1 and
Listing 1 with support routines in Listing 1.The data structures and defines are incomplete, but
meant to be representative. The basic utility routines of read() and write() take a file pointer as
the first argument (the names in the code are indicative of which file is being accessed) and a list
of data arguments that are sequentially read or written. seek() moves the file read/write pointer
to the specified offset in the file and write/readdata() writes/reads a block of data from the
specified file. The routine file_name_modify () is called before any modification is made to
the name state of a file. File_data_modify () is called before the data state of a file is mod-
ified and file stats_modify () is called before a call modifies the file stats. The function
hash_table_enter() puts a file control block onto a hash queue based on the value of the
curname field and hash_table_lookup () looks up the file control block that has the field
curname set to the passed name argument. The disk checkpoint restore pseudocode is shown in
and Listing 7 and Listing 7.

124

/* journal s=ntry structura ~
typedef struct {
short pid; /* process-id of executor */
int saq; /* seguence number of event */
) jrnrec_t;

/v global variakbles *7/

int Jlob_seq; /* global sequence number */

queusa jrng; /* journal queue */

int journaled; /* sequence of last record in journal */
int lastproc; /* process id of last process to

* write a record */

/* executed in exit sentry of journaling policy
for sequenced events */

journal () (
int new_glob;
jrnrec_t jrnrec;

/* increment the count */
new_glob = glob_seqg++;
/* wait until all previous records are in journal */
while (journaled != new_glob-1)
sleep (jrng, my_pid,new_glob) ;
/* now write this record into the journal */
jrnrec.pid = my_pid;
jrnrec.seq = new_glob;
if(lastproc == my_pid)
/* do run-length optimization */
overwrite_journal_record(&jrnrec);
else {
write_journal_record(&jrnrec);
lastproc = my_pid;
}
journaled++;
/* wakeup any process waiting to write the next record */
wakeup (jrng, journaled) ;

Listing 1. Journaling algorithm

Data structures associated with the snapshot algorithm are shown in Listing 3. The snapshot algo-
rithm itself is shown in Listing 3 and Listing 3.

125

/* journal entry structure */
typedef struct (
short pid; /* process-id of executor */
int sed; /* sequence number of event */
} jrnrec_t;

/* global variables */

int glob_seq; /* global sequence number */
jrnrec_t Jjrnrec; /* next journal record */

queue revrg; /* recover queue */

int curpid; /* process that will execute next

* sequenced event intialized to pid
* in first record of journal */

/* executed in entry sentry of recovery policy for
sequenced events */

replay () {
int new_glob;

/* wait until its this process’ turn */
while(curpid != my_pid)
sleep(rcvrg, my_pid, my_pid);
/* read next record out of journal */
if (new_glob == jrnrec.seg-1} {
read_journal (&jrnrec) ;
}
/* now can increment the count */
new_glob = glob_seqg++;
if (new_glob == jrnrec.seq) {
curpid = jrnrec.pid;
wakeup {rcvrq, jrnrec.pid) ;

Listing 2. Journal replay algorithm

126

/* signal entry definition *.
typedef struct

short signal; /* the signal type */
int sysnum; /* the system call the signal
* was delivered*/
} sigrec_t;
sigrec_t sigrec; /* each process has its own sigrec structure */

/* this is called in the entry sentry of the
recovery policy for
EVERY system call */

make_signal () (
sigrec_t nxtsig;

/* increment the system call count */
Proc->sysnum++;
/* time to deliver a signal? */
if(sigrec.sysnum == proc->sysnum} (
/* process delivers signal to itself */
send_signal (my_pid, sigrec.signal);
/* read the next signal from the signal file */
cc = read_signal(&sigrec);
if(cec (= 0) |
/* skip over all SLEEP/WAKEUP pairs */
while(sigrec.signal == SLEEP && cc>0) {
cc = read_signal (&nxtsig);
if(cc '= 0 && sigrec.signal == WAKEUP)
cc = read_signal (&sigrec);
else
bcopy (&nxtsig, &sigrec,sizeof (sigrec_t));
}

} else sigrec.sysnum = 0; /* set it to NULL */

Listing 3. Signal replay algorithm

127

/* stats structure */
typedef struct ({

time_t ctime; /* time the file was created */
time_t mtime; /* time the file was modified */
int size; /* size of the file */

) statstr;

/* data structure allocated for each file that is modified */
typedef struct (

int new;
int gone;
int fileid;
dynamicarray blocksbacked([];
string origname;
string curname;
statstr stats;

} filestr;

/* this file descriptor is shared by the application */

FILE *filecatalog;

int numfiles; /* counter used to assign identifiers to
* files */

/*****t*** support rOUClneS *i’tt***ii***/

/* allocate a new file control block */

new_filecb(char *name,statstr *stats) {
filestr *filech;

numfiles++;
filecb = alloc({sizeof(struct filestr));
filecb->fileid = numfiles;
filecb->origname = name;
filecb->curname = name;
/* if its a new file name is NULL */
if (name == NULL) filecb->new = TRUE;
filecb->stats = stats;
write(filecatalog, filecb, sizeof (filestr));
hash_table_enter (filecb);
return(filecbh);

}

/* looks up a file’s control block or allocates a new one */
file_lookup(char *name) (

filestr *filech;

statstr *stats;

filecb = hash_table_lookup (name) ;
if (filecb == 0) {
stats = read_stats(name});
filecb = new_filecb(name,stats);
}
return(filecb) ;

Listing 4. Disk checkpoint algorithm support routines

128

his file descriptor are shared by the application */

; T
FILE *renamefile;

/* called when the name stats of a file will be modified *¢/
fils name_modify{char *old_name, char *new_name) (

filestr filech;

filech = file_lookup(cld_name);

/* 1s it a delete operation? */
if(new_name == NULL && 'filecb.new) {

/* backup file and get the backup name */
new_name = move_to_backup (old_name) ;
}
/* delete old position in hash table */
hash_table_remove (filecb) ;
/* is it a new file? */

if(old_name == NULL) old_name = “new”;
/* deleting a new file? */
if (new_name == NULL && filecb->new) new_name = “gone”;

filecbh->curname = new_name;
write (renamefile, filecb->fileid, ocld_name,new_name) ;
hash_table_enter(filecb);

}

/* called when the stats part of a file will be modified */
file_stats_modify(char *name) ({
(void) file_lookup(name) ;

Listing 5. Disk checkpoint algorithm fault-free execution(a)

129

/* blockfile file descriptor is shared by the application */
FILE *blockfile;

/* called when the data state of a file is going to be modified.
The modification affects the file starting at pos and is length
in bytes */

file data_modify (FILE *file,char *name,int pos,int length) (
int i,startblock, numblocks, endblock;
int startread, readlen,bit, byte, mask;

filecb = file_lookup (name) ;
/* only backup files that existed at the ckpt */
if(!tfilecb->new) {
startblock = pos/BLOCKSIZE:
numblocks = length/BLOCKSIZE;
/* don‘t worry about blocks past the end of the
* original file */
endblock = filecb->stats.size/BLOCKSIZE;
startread = 0O;
readlen = 0;
/* collect the largest contiguous unbacked data blocks */
for(i = startblock;i <= startblock+numblocks;i++) {
/* calculate the bit representing the block */
byte = 1/8;
bit = 1 - byte*s;
mask = 1 << bit;
/* is the block backed alread? */
if (! (filecb->blocksbacked[byte] & mask)) {
filecb->blocksbacked [bytes] |= mask;
if(!startread) startread = i*BLOCKSIZE;
1f(i == endblock)
readlen += filecb->size - i1i*BLOCKSIZE;
else
readlen += BLOCKSIZE;
} else if{(readlen) ({
/* read the original data and back it */
seek(file,startread) ;
read_data(file,data, readlen);
write(blockfile,filecb->fileid,
startread, readlen) ;
write_data(blockfile,data, readlen) ;
startread = 0;
readlen = 0;

Listing 6. Disk checkpoint algorithm fault-free execution (b)

130

/* table used for fileindex->filecbh translation */
filestr *filechbtable (NUMFILES] ;

/* number of files in catalog */
int numfiles;

* renames phase is second to move all files back
to their original positions */

rename_phase () (
filestr *filech;
int pos;

/* start at end of file and read backwards */
pos = sizeof_file(renamefile);
/* backup one entry */
pos = pos-2*sizeof (rename_record) ;
while(pos) (
read(renamefile, fileid, origname, newname) ;
filecb = filecbtable[fileid];
if(filech)
if (filecb->gone) continue;
/* handle special cases */
/* is it a newfile that was deleted? */
if (newname == “gone”)
filecb->gone = TRUE;
else {
/* its a new file that needs to be deleted */
if(oldname == “new”)
delete (newname) ;
else (
/* see if it was a file that was backed up */
if (newname == “/back/*") {
/* **' is wildcard */
copyfile(newname, oldname) ;
else {
/* standard case -
do inverse of rename */
renamefile (newname, oldname) ;

Listing 7. Disk checkpoint restore algorithm(a)

131

/* this it the first step because it sets up the
filecb data structures with the file identifiers =+’
read_£file_catalog() {
filecbh = alloc(sizeof{struct filestr)}

while(read(filecatalog, filecb,sizeof (struct filestry}) (
hash_queue_enter(filecb);
filecbtable[numfiles++] = filecb;

/* now, the data portion of the files are restored */
block_restore_phase() (
int cc, fileindex,pos, len;

while(cc = read(blockfile,&fileindex, &pos,.&len)) {
read_data(blockfile,data,len};
seek(filecbtable(fileindex]->curname,pos) ;
write_data(filecbtable(fileindex]->curname,data,len);

/* finally, the file stats are restored */
stats_phase() {

int i;

statstr stats;

for(i=0;i<numfiles;i++)
write_stats(filecbtable(i].curname, filecbtable(i].stats);
}

/* main recovery routine called at the beginning of a recovery */
disk_restore{) (

read_file_catalog();

rename_phase () ;

block_restore_phase();

stats_phase();

/* free all data structs -they are recreated dynamically

during the recovery execution */

free_filecbtable();

Listing 8. Disk checkpoint restore algorithm(b)

132

/* the process list data structure is maintainsd by the checkpointing
policy and it reflects the process that are currently part of
the application */

cypedef struct applist_str ¢
/* the ckpted flag is initially zero */

int ckptad;
/* set by sentry indicating process 1s waiting in syscall entry *~/
int inentry;
struct proc *proc;
struct applist_str *next;
) applist;

/* procs in the application */
applist approcs;

Listing 9. Snapshot data structures

/* snapshot algorithm */
snapshot () {
int numleft;
applist *Curproc;

/* first, freeze all procs */
numleft=0;
Curproc = appprocs;
/* tell procs to wait in system call entry */
set_stop_in_entry_flag();
while(curproc) ({
process_suspend (curproc->proc) ;
curproc->stopped = TRUE;
numleft++;
curproc = curproc->next;
)
/* see next figure for continuation */

Listing 10. Snapshot algorithm (a)

133

S

routine continued £rom pravious figure */
while (numleft) ¢
curproc = appprocs;
whila (curproct
if (! ({curproc->ckpted == TRUE)) {
{lcurproc->stopped) (
process_suspend{curproc->proci;
curproc->stopped = TRUE;
)
;* in state 1? */
if(in_own_address_space(curproc->proc)) (
checkpoint_process(curproc->proc) ;
curproc->ckpted = TRUE;
numleft--;
}
/* in 4 or in call entry? */
i1f (curproc->inentry ||
in_semi_sleep(curproc->proc)) (
/* if proc in system call, regs need to
* fixed for restart
*/
fix_registers(curproc->proc};
checkpoint_process (curproc->proc) ;
curproc->ckpted = TRUE;
numleft--;
)
/* in state 2 or 3 (not checkpointable) */
if (curproc->ckpted != TRUE) (
/* process need to continue a little */
curproc->proc->stopped = FALSE;
process_resume (Curproc->proc) ;

}
Curproc = curproc->next;
)
/* let preccess run for awhile before checking them again */
if(numleft) delay():
)
CUrproc = appprocs;
while (curproc) (
process_resume (CUrproc->proc) ;
curproc->stopped = FALSE;
CUrproc = curproc->next;

Listing 11. Snapshot algorithm (b)

134

